Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

2

1

³ Facile and green synthesis approach to derive highly stable SiO_x-Hard

4 carbon based nanocomposites as anode for lithium-ion batteries

- 5 Jay Krishan Dora, ^a Debasis Nayak, ^a Sudipto Ghosh, ^a Venimadhav Adyam,^b Natraj Yedla^c and Tarun
- 6 Kumar Kundu *a
- 7 aDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur –
- 8 721302, WB, India
- 9 bCryogenic Engineering Centre, IIT Kharagpur, Kharagpur, 721302, India
- 10 ^cDepartment of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769008,
- 11 Orissa, India

12	
13	E-mail: tkkundu@metal.iitkgp.ernet.in, tkkundu@gmail.com
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
21	
20 20	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	

Table S1 Facile weight ratio calculation for all the samples

Sample	Sucrose (g)	TEOS (g)	C-Yield (g)	SiO _x -Yield (g)	HC:SiO _x (Wt ratio)
SOHC-1	8	5	3.36	1.45	~ 1:0.4
SOHC-2	8	6	3.36	1.74	~ 1:0.5
SOHC-3	8	8	3.36	2.32	~ 1:0.6
SOHC-4	8	9	3.36	2.61	~ 1:0.8
SOHC-5	8	11	3.36	3.34	~ 1:1
SOHC-N	8	8	3.36	2.32	~ 1:0.6 + N

Table S2 EDS elemental weight concentration for SOHC-3 and SOHC-N electrodes

Sample		Elemental weight (%)		
	С	ο	Si	Ν
SOHC-3	56.88	30.86	12.25	0.00
SOHC-N	48.38	16.76	13.16	21.69

Sample		Atomic Concentration of the elements (%)		
	C	ο	Si	Ν
SOHC-3	54.45	28.80	16.75	0.00
SOHC-N	50.93	29.85	17.47	1.75

Fig. S1 CV plots for (a) SOHC-1 (b) SOHC-2 (c) SOHC-3 (d) SOHC-4 (e) SOHC-5 (f) SOHC-N anode materials.

Table S4 Electrochemical Performanc	e Comparison between the Pi	reviously Reported SiO _x /C based	composite anode.
Anode materials	Cycling stability	Rate capability	Ref.
SiO _x /hard carbon (SOHC-3)	456 mAh g ⁻¹ (500 th , 100 mA g ⁻¹)	622 mAh g ⁻¹ at 1000 mA g ⁻¹	This Work
SiO _x /hard carbon-N (SOHC-N)	~1248.76 mAh g ⁻¹ (500 th , 100 mA g ⁻¹)	1139.3 mAh g ⁻¹ at 1000 mA g ⁻¹	This Work
SiO _x /C spheres	493.1 mAh g ⁻¹ (500 th , 1 A g ⁻¹)	146.2 mAh g ⁻¹ at 10 A g ⁻¹	1
Ultrafine SiO _x /C nanospheres	~872 mAh g ⁻¹ (200 th , 500 mA g ⁻¹)	${\sim}532\text{mAh}\text{g}^{-1}$ at 2000 mA g^{-1}	2
Pea-pod structure of SiO _x /C spheres	~750 mAh g ⁻¹ (750 th , 1000 mA g ⁻¹)	\sim 427 mAh g ⁻¹ at 5000 mA g ⁻¹	3
SiO _x /C composite	~817 mAh g ⁻¹ (100 th , 1000 mA g ⁻¹)	650 mAh g $^{-1}$ at 0.8 A g $^{-1}$	4
SiO _x /C dual-phase glass	840 mAh g ⁻¹ (100 th , 0.1 A g ⁻¹)	673 mAh g ⁻¹ at 0.8 mA g ⁻¹	5
Core-shell structured SiO _x /nitrogen- doped carbon composite	1514 mAh g ⁻¹ (100 th , 100 mA g ⁻¹)	1190 mAh g ⁻¹ at 1000 mA g ⁻¹	6

Fig. S2 Galvanostatic charge-discharge plots at (a) 2nd cycle (b) 10th cycle (c) 100th cycle (d) 200th cycle of all the electrodes (SOHC-1 to SOHC-N).

Fig. S3 (a) Single step GITT discharge profile (b) single step GITT charge profile (c) linear fit during discharge condition (d) linear fit during charging condition for SOHC-3 sample.

Fig. S4 (a) Single step GITT discharge profile (b) single step GITT charge profile (c) linear fit during discharge condition (d) linear fit during charging condition for SOHC-3 sample.

Fig. S5 Schematic representation of the synthesis route followed to derive SOHC-1 to SOHC-N samples for LIB electrode.

Samples	НС	0	Si	Empirical Formula	Ratio (SiO _x :
	(wt %)	(wt %)	(wt %)		HC)
SOHC-1	60.38	16.76	13.16	SiO _{1.27} HC _{4.48}	0.495 : 1
SOHC-2	65.43	22.77	13.79	SiO _{1.65} HC _{4.74}	0.559 : 1
SOHC-3	56.88	22.86	12.25	SiO _{1.86} HC _{4.64}	0.617 : 1
SOHC-4	55.80	24.72	24.48	SiO _{1.009} HC _{2.28}	0.882 : 1
SOHC-5	55.38	36.17	26.1	SiO _{1.39} HC _{2.12}	1.123 : 1

- 9
- 10

11 References

- 12
- 13 1 M. Han and J. Yu, *Journal of Power Sources*, 2019, **414**, 435–443.
- 14 2 Q. Yu, P. Ge, Z. Liu, M. Xu, W. Yang, L. Zhou, D. Zhao and L. Mai, J. Mater. Chem. A, 2018, 6, 14903–14909.
- 15 3 Y. Zheng, X. Kong, I. Usman, X. Xie, S. Liang, G. Cao and A. Pan, *Inorg. Chem. Front.*, 2020, **7**, 1762–1769.
- 16 4 P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, *Electrochimica Acta*, 2015, **152**, 345–351.

Table S5 Composition and weight ratio of the composite samples (SOHC-1 to SOHC-N)

- 17 5 P. Lv, H. Zhao, C. Gao, Z. Du, J. Wang and X. Liu, *Journal of Power Sources*, 2015, **274**, 542–550.
- 18 6 L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin and Y. Yang, *Journal of Power Sources*, 2016, **318**, 184–191.