Electronic Supplementary Information (ESI)

Highly flexible free-standing Sb/Sb₂O₃@N-doped carbon nanofibers membranes

for sodium ion batteries with excellent stability

Dongdong Li,^{a†} Junzhi Li,^{b†} Junming Cao,^a Xiyao Fu,^a Liang Zhou,^{*a} Wei Han,^{*a}

^a Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin university, Changchun 130012, P.R. China.

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.

Corresponding authors:

Dr. Liang Zhou email: <u>zhouliang@jlu.edu.cn;</u>

Prof. Wei Han email: whan@jlu.edu.cn;

Fig S1. The SEM image of Sb₂O₃ after ultrasonification treatment.

Fig S2. XRD patterns of Sb@C.

Fig S3. XRD patterns of pristine Sb₂O₃.

Fig S4. The TGA spectra of Sb/Sb₂O₃@NCNFs.

Fig S5. SEM image of (a) Sb@C and (b) NCNFs.

Fig S6. CV curves of (a) Sb@C and (b) NCNFs.

Fig S7. The EIS curves of original and after cycles for Sb/Sb₂O₃@NCNFs.

Fig S8. The SEM image of Sb/Sb₂O₃@NCNFs after cycles.

Fig S9. (a) log (peak current) vs. log (scan rates) plots of Sb/Sb₂O₃@NCNFs, (b) calculated b-values for Sb/Sb₂O₃@NCNFs at different potential.

Fig S10. (a) log (peak current) vs. log (scan rates) plots of Sb@C, (b) calculated b-values for Sb@C at different potential.

Fig S11. log (peak current) vs. log (scan rates) plots of NCNFs.

Fig S12. (a) CV curves of NCNFs at various scan rates, (b) The percentage of capacitive- and diffusion-controlled contribution at various scan rates.

Fig S13. (a) CV curves of Sb@C at various scan rates, (b) The percentage of capacitive- and diffusion-controlled contribution at various scan rates.

Element	Sb/Sb ₂ O ₃ @NCNFs	
	Atomic%	
С	56.71	
Ν	9.87	
0	29	
Sb	4.42	

Table S1. The element contents of Sb/Sb₂O₃@NCNFs according to XPS.

Table S2. The element contents of Sb/Sb₂O₃@NCNFs according to EDS.

Element	$Sb/Sb_2O_3($	Sb/Sb ₂ O ₃ @NCNFs		
	Atomic%	Wt%		
С	67.13	46.25		
Ν	9.51	7.64		
Ο	19.29	17.7		
Sb	4.07	28.41		

Table S3. Summary of the Antimony-based materials for SIBs

Materials	Current density (A g ⁻¹)	Cycle number	Reversible capacity (mAh g ⁻¹)	Reference
Sb/Sb ₂ O ₃ @NCNFs	0.1/1	100/700	527.3/400	This work
Sb-C nanofibers	0.2	400	446	1
Sb/Sb ₂ O ₃ -PPy	0.066	100	512.01	2
3D Ni/NiSb/Sb ₂ O ₃	0.2	100	410	3
Sb/SbO _x /RGO	0.05	100	311.6	4
Sb@C	0.1	240	407	5
Sb/Sb_2O_3	0.66	180	540	6
SbNP@C	0.1	300	350	7
C@Sb	1	700	386.3	8
Sb ₂ O ₃ /Sb@graphene- CSN	0.1	200	491	9

References

- (1) L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, *Energy Environ. Sci.* 2014, 7, 323-328.
- (2) D. H. Nam, K. S. Hong, S. J. Lim, M. J. Kim and H. S. Kwon, Small 2015, 11, 2885-2892.
- (3) S. Kim, S. Qu, R. Zhang and P. Braun, Small 201900258.
- (4) G. Wang, J. Feng, L. Dong, X. Li, D. Li, J. Alloys Compd 2017, 693, 141-149.
- (5) Z. Liu, X. Y. Yu, X. W. Lou and U. Paik, Energy Environ. Sci 2016, 9, 2314-2318.
- (6) J. Pan, N. Wang, Y. Zhou, X. Yang, W. Zhou, Y. Qian and J. Yang, *Nano Res* 2017, 10, 1794-1803.
- (7) Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, and C. Wang, ACS nano 2013, 7, 6378-6386.
- (8) W. Zhao, L. Zou, X. Ma, W. Zhang, Y. Li, G. Wang, P. Zhang and L. Xia, *Electrochim. Acta* 2019, **300**, 396-403.
- (9) N. Li, S. Liao, Y. Sun, H. W. Song and C. X. Wang, J. Mater. Chem. A 2015, 3, 5820-5828.