Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

# **Electronic Supplementary Information**

## Blue phosphorene/ $Sc_2CX_2$ (X = O, F) van der Waals Heterostructures as suitable

### candidates for water-splitting photocatalysts and solar cells

Xiao-Hua Li<sup>a</sup>, Bao-Ji Wang<sup>a\*</sup>, Guo-Dong Wang<sup>a</sup>, and San-Huang Ke<sup>b\*</sup>

<sup>a</sup>School of Physics and Electronic Information Engineering, Henan Polytechnic University,

Jiaozuo, People's Republic of China

<sup>b</sup>MOE Key Laboratory of Microstructured Materials, School of Physics Science and Engineering, Tongji University, Shanghai, People's Republic of China

\*Corresponding authors: wbj@hpu.edu.cn and shke@tongji.edu.cn



Fig. S1. Top and side views of (a)  $\alpha$ -type and (b)  $\beta$ -type BlueP/Sc<sub>2</sub>CO<sub>2</sub> heterostructures.



FIg. **S2**. Top and side views of (a) BlueP/Sc<sub>2</sub>CO<sub>2</sub> and (b) BlueP/Sc<sub>2</sub>CF<sub>2</sub> heterostructures with different stacking confifigurations in terms of rotation  $60^0$  angles of the BlueP monolayer with respect to Sc<sub>2</sub>CX<sub>2</sub>.

Table S1. Binding energy per unit cell ( $E_b$ /meV) and the interlayer distance (D/Å) of BlueP/Sc<sub>2</sub>CX<sub>2</sub> heterostructures for six confifigurations (I-VI). The bold values represent the largest binding energy among different stackings.

| Congfiguration                        | Ι       |      | II      |      | III     |      | IV      |      | V      |      | VI     |      |
|---------------------------------------|---------|------|---------|------|---------|------|---------|------|--------|------|--------|------|
|                                       | $E_{b}$ | D    | Eb      | D    | Eb      | D    | Eb      | D    | Eb     | D    | Eb     | D    |
| BlueP/Sc <sub>2</sub> CO <sub>2</sub> | -203.24 | 2.48 | -198.88 | 2.61 | -148.76 | 2.97 | -153.41 | 2.88 | -71.37 | 3.54 | -75.04 | 3.41 |
| BlueP/Sc <sub>2</sub> CF <sub>2</sub> | -142.40 | 2.85 | -143.74 | 2.80 | -132.51 | 2.90 | -130.61 | 2.91 | -78.75 | 3.34 | -78.43 | 3.35 |

Table S2: Macroscopic static dielectric constants ( $\varepsilon$ ), effective mass ( $m/m_0$ ), and exciton binding energies ( $E_{eb}/eV$ ) of BlueP/Sc<sub>2</sub>CX<sub>2</sub> heterostructures

|                                       |      | $\mathcal{E}_{\mathrm{ion}}$ |      |      | $\mathcal{E}_{el}$ | me   | $m_h$ | Eeb  |      |
|---------------------------------------|------|------------------------------|------|------|--------------------|------|-------|------|------|
|                                       | x    | У                            | Z    | x    | У                  | Z    |       |      |      |
| BlueP                                 | 0    | 0                            | 0    | 2.19 | 2.19               | 1.10 | 0.67  | 1.13 | 1.19 |
| Sc <sub>2</sub> CO <sub>2</sub>       | 2.55 | 2.55                         | 0.08 | 2.91 | 2.91               | 1.32 | 1.06  | 1.06 | 0.24 |
| Sc <sub>2</sub> CF <sub>2</sub>       | 8.86 | 8.87                         | 0.08 | 3.89 | 3.89               | 1.32 | 0.61  | 2.19 | 0.04 |
| BlueP/Sc <sub>2</sub> CO <sub>2</sub> | 1.22 | 1.22                         | 0.03 | 3.11 | 3.11               | 1.27 | 0.19  | 0.98 | 0.12 |
| BlueP/Sc <sub>2</sub> CF <sub>2</sub> | 4.39 | 4.37                         | 0.04 | 3.62 | 3.62               | 1.27 | 0.79  | 0.54 | 0.07 |

#### **Discussion S1:**

In the Scharber's formalism for calculating PCE, the gap of donor material is the optical gap, which is usually less than the electronic gap. In fact, the electronic gap calculated with HSE method is less than experimental electronic band gap. So far, there is no experimental optical band gap available for BlueP and Sc<sub>2</sub>CX<sub>2</sub>. In the case of phosphorene, HSE06 gives a result of 1.49 eV, which is very close to the optical band gap (1.45 eV)<sup>[1]</sup>. Similar results also exist for MoS<sub>2</sub> monolayer<sup>[1]</sup>. This good agreement between the HSE06 band gaps and experimental optical band gaps is, of course, by coincidence and has no real physics. Therefore, in our work, it should be reasonable to take the HSE06 band gap to represent the gaps of donor materials for calculating the power conversion efficiency.

### References

[1] Li, Y. G.; Li, Y. L.; Sa, B. S.; Ahujad, R. Review of Two-Dimensional Materials for Photocatalytic Water Splitting from a Theoretical Perspective. *Catal. Sci. Technol.* **2017**, *7*, 545–559.