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1. Characterization

1.1. Transmission electron microscope (TEM)

The TEM images of the titanate catalysts were obtained with a TECNAI G? Spirit
FEI Transmission Electron Microscopy operated at an accelerating voltage of 120 kV.

Before the tests, the Ni catalysts were reduced by H, at 773 K for 2 h.

1.2. X-ray diffraction (XRD)

XRD patterns of the titanate catalysts were recorded with a PW3040/60X” Pert PRO
(PANalytical) diffractometer using a Cu K, radiation source (A =0.15432 nm) operated

at 40 kV and 40 mA.

1.3. N,—physical adsorption

The N,-physical adsorption was carried out at 77 K by ASAP 2010 (Micromeritics).
The specific surface areas of different titanate samples were measured by Brunauer—
Emmett-Teller (BET) method. Before each measurement, the sample was evacuated at

573 K to eliminate the adsorbents.

1.4. NH; chemisorption

The amounts of acid sites on the surfaces of different titanate catalysts were measured
by NHj chemisorption according to the method described in our previous work.? The
measurements were carried out by a Micrometeritics Autochem 2920 Automated
Catalyst Characterization System. Typically, 0.1 g of catalyst was loaded into a quartz
reactor, purged at 393 K for 2 h and cooled down to 373 K in He flow. Subsequently,
pulses of NH; (1 mL) were dosed in the reactor until saturation. The amounts of acid

sites on different catalysts were calculated by the adsorptions of NH; during the tests.
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1.5. NH; temperature programmed desorption (NH;—TPD)

The acid strengths of titanate catalysts were characterized by NH;-TPD which was
carried out on a Micrometeritics AutoChem II 2920 Automated Catalyst
Characterization System. For each test, 0.1 g sample was used. Before the
measurement, the sample was purged with He flow at 393 K for 2 h. After saturated
adsorption of NHj at 373 K, the sample was heated at 373 K in He flow for 45 min to
remove the physically adsorbed ammonia. Desorption of NH; was conducted in He
flow from 373 K to 1073 K at a heating rate of 10 K min'!. The desorbed NH; molecules
were detected by an OminiStar mass spectrometry (MS) equipped with the software
quadstar 32-bit.

1.6. Pyridine infrared (IR)

Different types of acid sites on solid catalyst surface (TiO, P25-and PTNT) were
analysed by pyridine IR to get deeper insight the acidity change during preparation of
PTNT. The analyses were conducted by Bruker Vertex 70 spectrometer equipped with
a mercury cadmium telluride (MCT) detector. Generally, samples were grounded,
pressed to form 1cm-diameter wafers, and installed on supports. The sample cell was
heated to 423 K for 1 h in order to remove the physically absorbed water and then
cooled to room temperature. The spectrum of sample was recorded using a mercury—
cadmium—telluride (MCT) infrared detector as background. Subsequently, Pyridine
was introduced into the cell, and the adsorption was performed. The excess and
physically adsorbed pyridine was evacuated under vacuum at room temperature.
Finally, the IR spectrum of sample was recorded at room temperature by the subtraction

of background.
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Fig. S5 Gas chromatogram of the reaction product of 2-methyl benzaldehyde and

acetone. Reaction conditions: 10 mL acetone, 5 mmol 2-methyl benzaldehyde, 0.15 g

PTNT; 343 K for 8 h.
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Fig. S6 Mass spectrogram of the 1A from the aldol condensation of 2-methyl

benzaldehyde and acetone.
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Fig. S7 'H-NMR and '*C-NMR spectra of the 1A from the aldol condensation of 2-

methyl benzaldehyde and acetone.
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Fig. S8 Mass spectrogram of the 1AII from the aldol condensation of 2-methyl

benzaldehyde and acetone.
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Fig. S9 'H-NMR and '3C-NMR spectra of the 1AIIl from the aldol condensation of 2-methyl

benzaldehyde and acetone.
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Fig. S10 Mass spectrogram of the 1AIIl from the aldol condensation of 2-methyl

benzaldehyde and acetone.
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Fig. S11 'H-NMR and 3C-NMR spectra of the 1AIII from the aldol condensation of

2-methyl benzaldehyde and acetone.
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Fig. S12 Mass spectrogram of the methyl isobutenyl ketone from the self aldol-

condensation of acetone
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Fig. S13 Gas chromatogram of the reaction product of 4-methyl benzaldehyde and
acetone. Reaction conditions: 10 mL acetone, 5 mmol 4-methyl benzaldehyde, 0.15 g

PTNT, 353 K for 6 h.
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Fig. S14 Mass spectrogram of the 2A from the aldol condensation of 4-methyl

benzaldehyde and acetone.
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Fig. S15 'H-NMR and 3C-NMR spectra of the 2A from the aldol condensation of 4-

methyl benzaldehyde and acetone.
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Fig. S16 Mass spectrogram of the 2AIl from the aldol condensation of 4-methyl

benzaldehyde and acetone.
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Fig. S17 'TH-NMR and 3C-NMR spectra of the 2AII from the aldol condensation of 4-

methyl benzaldehyde and acetone.
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Fig. S18 Mass spectrogram of the 2AIIl from the aldol condensation of 4-methyl

benzaldehyde and acetone.
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Fig. S19 '"H-NMR and '3*C-NMR spectra of the 2AIII from the aldol condensation of

4-methyl benzaldehyde and acetone.
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Fig. S20 Gas chromatogram of the HDO products of 1A over the Pt/C catalyst. Reaction

conditions: 10 mmol 1A, 40 mL cyclohexane, 0.1 g Pt/C, 6 MPa H,; 393 K for 4 h.
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Fig. S21 Mass spectrogram of 1B from the HDO of 1A.
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Fig. S22 Mass spectrogram of 1C from the HDO of 1A.
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Fig. S23 Mass spectrogram of 1D from the HDO of 1A.
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Fig. S24 Gas chromatogram of the HDO products of 1A over Pt/C catalyst. Reaction

conditions: 10 mmol 1A, 40 mL cyclohexane, 0.1 g Pt/C, 2 MPa H,; 403 K for 4 h.
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Fig. S25 Mass spectrogram of 1E from the HDO of 1A.
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Fig. S26 Gas chromatogram of the HDO products of 2A over Pt/C catalyst. Reaction

conditions: 10 mmol 2A, 40 mL cyclohexane, 0.1 g Pt/C, 5 MPa H,; 403 K for 2 h.
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Fig. S27 Mass spectrogram of 2B from the HDO of 2A.
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Fig. S28 Mass spectrogram of 2C from the HDO of 2A.
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