# Supplemental information

Understanding the effect of H<sub>2</sub>O on CO<sub>2</sub> adsorption capture :

Mechanism explanation, Quantitative approach and Application

Jie Zhao<sup>*a,b*</sup>, Shuai Deng<sup>*a,b,\**</sup>, Li Zhao<sup>*a*</sup>, Xiangzhou Yuan<sup>*c*</sup>, Zhenyu Du<sup>*a,b*</sup>, Shuangjun Li<sup>*a,b*</sup>,

, Lijin Chen<sup>a,b</sup>, Kailong Wu<sup>a,b</sup>

<sup>a</sup> Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin

University), MOE, Tianjin University, Tianjin 300072, China

<sup>b</sup> International Cooperation Research Centre of Carbon Capture in Ultra-low Energyconsumption

<sup>c</sup> Department of Chemical and Biological Engineering, Korea University, 145 Anamro, Seongbuk-gu, Seoul, 02831, Republic of Korea



Fig.S1 A summary of multi-component adsorption measurements for CO<sub>2</sub>, N<sub>2</sub> and H<sub>2</sub>O multicomponents, the adsorption experimental data from Jarad et al <sup>[9]</sup>. Equilibrium conditions represented by flue gas from coal-fired power plants. The blue bars represent the H<sub>2</sub>O vapor adsorbed in the mixture. The red bars represent the amount of CO<sub>2</sub> adsorbed in the pure component. The green bars represent the amount of CO<sub>2</sub> adsorbed in the mixture at the same partial pressure as the pure component. The total pressure is 82.1-89 kPa. P<sub>CO2</sub> is 11.3-17.8 kPa, and the P<sub>H2O</sub> is 1-2.9 kPa. Adsorption temperature is 298-313 K. RH represents the relative humidity (P<sub>H2O</sub>/P<sub>sat, H2O</sub>).

# 1. adsorption entropy

To properly evaluate the adsorption entropy, it is important to remember that there are different degrees of freedom, each of which has its own contribution to the total entropy. An  $H_2O$  gas molecule has 3 translational, 3 rotational, and 3 vibrational degrees of freedom. An  $CO_2$  molecule has 2 rotational and 4 vibrational degrees of freedom on top of 3 translations. After adsorption, the translational and rotational degrees of freedom of molecules are lost and replaced by the vibrational degrees of freedom, which essentially hinder the translational and rotational degrees of molecules. Therefore, the entropy change of adsorption phase is calculated by vibration entropy:

$$S_{vib} = Nk \left( \sum \frac{hv_i / kT}{e^{hv_i / kT} - 1} - \ln \left( 1 - e^{-hv_i / kT} \right) \right)$$

| Table S1 Force field parameters in this work. |                   |        |  |
|-----------------------------------------------|-------------------|--------|--|
|                                               | $\epsilon/k_b(K)$ | σ (Å)  |  |
| $C_{CO2}$ - $C_{CO2}$                         | 29.933            | 2.745  |  |
| $C_{CO2}$ - $O_{CO2}$                         | 56.640            | 2.880  |  |
| O <sub>CO2</sub> -C <sub>CO2</sub>            | 85.617            | 3.017  |  |
| C <sub>CO2</sub> -O <sub>MFI</sub>            | 37.595            | 3.511  |  |
| O <sub>CO2</sub> -O <sub>MFI</sub>            | 78.980            | 3.237  |  |
| O <sub>spce</sub> -O <sub>spce</sub>          | 78.197            | 3.1656 |  |
| O <sub>spce</sub> -O <sub>MFI</sub>           | 85.152            | 3.723  |  |

## 2. Force field parameters used in this work.

| Table S2 Cha     | arges    |
|------------------|----------|
| Atom             | q (e-)   |
| O <sub>CO2</sub> | -0.32560 |
| C <sub>CO2</sub> | 0.65120  |
| Si               | 0.78598  |
| Al               | 0.48598  |
| O <sub>si</sub>  | -0.39299 |
| O <sub>Al</sub>  | -0.41384 |

3. Adsorption isotherms for pure H<sub>2</sub>O using SPC/E, TIP4P, TIP5P model.



Fig. S2 Adsorption isotherm of H<sub>2</sub>O under different water models

# 4. Fitting parameters for adsorption isotherms model in this work.

In order to obtain a working isotherm model for  $H_2O$  adsorption on MFI over a wide range of adsorbate pressures, the phenomena of monolayer, multilayer and capillary condensation should be considered carefully. The monolayer behavior is easy to account for by choosing an adsorption model that at low pressure reduces to the Langmuir isotherm. The prediction of multilayer behavior requires the model to have a built-in capability to account for the presence of successive adsorbate layers on top of each other. According to the current research on water adsorption, three common models were selected for fitting. It is found that the Sips model is more accurate to the water adsorption isotherm in all pressure ranges.

For H<sub>2</sub>O:

1) Duel-sites Langmuir-Freundlich model (DSLF)

$$N = A_1 \frac{B_1 \times P^{C_1}}{1 + B_1 \times P^{C_1}} + A_2 \frac{B_2 \times P^{C_2}}{1 + B_2 \times P^{C_2}}$$

N is molar loading of species i (mol/kg)

- A is saturation capacity of species (mol/kg)
- B is Langmuir constant (kPa<sup>-1</sup>)

## C is Freundlich constant

P is bulk gas phase pressure of species i (kPa)

| Table S3           |           |           |           |
|--------------------|-----------|-----------|-----------|
| parameter          |           | value     |           |
|                    | 300 K     | 350 K     | 400 K     |
| A1 (mol/kg)        | 5.04e-09  | 6.054e-09 | 7.487e-09 |
| $B_1(kPa^{-1})$    | 0.03217   | 1.568e-10 | 4.769e-09 |
| C <sub>1</sub> (-) | 1.078e-14 | 2.22e-14  | 4.525e-14 |
| $A_2$ (mol/kg)     | 5.14      | 4.99      | 4.913     |
| $B_2(kPa^{-1})$    | 1.806e-14 | 3.783e-14 | 4.543e-14 |
| C <sub>2</sub> (-) | 23.51     | 10.6      | 6.32      |
| R <sup>2</sup>     | 0.9933    | 0.9948    | 0.98      |
| RMSE               | 0.2175    | 0.1684    | 0.3165    |

2) GAB:

$$\frac{q}{q_m} = \frac{C \cdot k \cdot p / p^{sat}}{\left(1 - k \cdot p / p^{sat}\right) \cdot \left(1 + (C - 1) \cdot k \cdot p / p^{sat}\right)}$$

 $q_m$  is saturation capacity of species (mol/kg)

## C, k is GAB constant

Psat is the saturation pressure of species

| parameter      |          | value   |        |
|----------------|----------|---------|--------|
|                | 300 K    | 350 K   | 400 K  |
| $q_m$ (mol/kg) | 1.9      | 1.89    | 1.7    |
| C (-)          | 0.007218 | 0.05703 | 0.1013 |
| k              | 1.52     | 1.808   | 1.478  |
| R <sup>2</sup> | 0.996    | 0.986   | 0.9781 |
| RMSE           | 0.1007   | 0.2082  | 0.1983 |

3) Sips:

$$f(p) = \frac{q_m (bp)^{1/n}}{1 + (bp)^{1/n}}$$

 $q_m$  is saturation capacity of species (mol/kg)

#### b, n is Sips constant

| Table S5                |        |         |          |
|-------------------------|--------|---------|----------|
| parameter               |        | value   |          |
|                         | 300K   | 350K    | 400K     |
| q <sub>m</sub> (mol/kg) | 5.147  | 4.99    | 4.68     |
| B (1/kPa)               | 0.4681 | 0.0541  | 0.007742 |
| n                       | 0.0256 | 0.06242 | 0.06906  |
| R <sup>2</sup>          | 0.9998 | 0.9998  | 0.9984   |
| RMSE                    | 3.42%  | 3.78%   | 9.22%    |

### For CO2:

#### DSLF:

Table S6

| parameter          | value    |                |               |
|--------------------|----------|----------------|---------------|
|                    | 300K     | 350K           | 400K          |
| A1 (mol/kg)        | 2.7      | 2.464          | 2.106         |
| $B_1(kPa^{-1})$    | 0.04821  | 0.008799       | 0.001962      |
| C <sub>1</sub> (-) | 0.8443   | 1.005          | 1.06          |
| $A_2$ (mol/kg)     | 0.3348   | 0.05879 mol/kg | 0.2874 mol/kg |
| $B_2(kPa^{-1})$    | 0.003222 | 0.007554       | 0.008743      |
| C <sub>2</sub> (-) | 2.404    | 0.5479         | 0.7071        |
| R <sup>2</sup>     | 0.9999   | 0.9992         | 0.9999        |
| RMSE               | 0.89%    | 1.7%           | 0.26%         |

# Reference

1. García-Sanchez, A.; Ania, C. O.; Parra, J. B.; Dubbeldam, D.; Vlugt, T. J. H.; Krishna, R.; Calero,

S. Transferable Force Field for Carbon Dioxide Adsorption in Zeolites. J. Phys. Chem. C 2009, 113,

8814-8820.

2. Lennart Joos, Kurt Lejaeghere. Carbon capture turned upside down: high temperature adsorption

& low-temperature desorption. Energy and environmental science.2015, 8, 2480.