Electronic Supplementary Information

All-Fiber Acousto- electric Energy Harvester from Magnesium Salt Modulated PVDF

Nanofiber

Biswajit Mahanty^{a,b,\$}, Sujoy Kumar Ghosh^{a,†,\$}, Santanu Jana^c, Krittish Roy^a, Subrata Sarkar^a and Dipankar Mandal^{*d}

^aDepartment of Physics, Jadavpur University, Kolkata 700032, India

^bDepartment of Electronics & Communication Engineering, Saroj Mohan Institute of Technology, Guptipara, Hooghly 712512, India

^cDepartment of Electronics, Netaji Nagar Day College, Kolkata 700092, India

^dInstitute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India

Corresponding author: dmandal@inst.ac.in, dpkrmandal@gmail.com

^{\$} These authors contributed equally to this work.

Material	Sensitivity (V/kPa)	Reference					
Piezoelectric fiber array vertically	0.027	1					
integrated P(VDF-TrFE)							
P(VDF-TrFE)/CMOS	0.011	2					
transistor							
P(VDF-TrFE) film	2.2×10 ⁻⁵	3					
Carbonized	0.324	4					
electrospun							
polyacrylonitrile/barium titanate							
(PAN-C/BTO)							
nanofiber film							
Aligned P(VDF-TrFE)/MWCNT	0.121	5					
composites							
Cellular fluorocarbon	1.54	6					
P(VDF-TrFE) thin film	7.5×10 ⁻⁴	7					
Eletrospun PVDF	8.2×10 ⁻⁴	8					
fabric							
P(VDF-TrFE) nanotube	0.05	9					
Electrospun	0.017	10					
PVDF/BaTiO ₃							
nanowire (NW)							
nanocomposite fibers							
Laterally aligned PZT angle- crystal	0.14	11					
nanowires							
PVDF-MWCNT-	0.0176	12					
OMMT							
PVDF-ZnO nanofibers	0.00312	13					
PVDF-Mg nanofibers	0.44	This work					

 Table S1 Mechano-sensitivity of reported piezoelectric based pressure sensors.

Active material	Electrode	Charging time(s), Capacitor value (μF)	Saturation voltage (V), Power stored (μW)	References
P(VDF-TrFE)/BaTiO ₃	conductive fabric	250, 0.068	35, 0.17	14
aligned PVDF	(PANI-PVDF)	60, 1.0	4, 1.3	15
NFs	NFs mats			
P(VDF-TrFE)	Al foils	1800, 47	16, 3.34	16
Pt-PVDF	Cu-Ni polyester	80, 1	3, 0.06	17
	fabric			
PZT-NH ₂ NPs	Al-coated	100, 2.2	4, 0.18	18
	(PI)/PET)			
Hybridization sugar-	Conducting textile	100, 1	8, 0.32	19
encapsulated PVDF				
PVDF/ BaTiO ₃	Al foils	76, 1	1.40, 0.01	20
(P(VDF-TrFE))/ BaTiO ₃	ITO-coated PET	120, 4.7	1.5, 0.04	21
Poly(vinyl alcohol)	Ni-Cu polyester	40, 1	0.72, 0.007	22
(PVA)/ ZnS	fabric,			
nanorods				
PVDF/ ZnS	Ni–Cu polyester	130, 2.2	10, 0.85	23
nanorods	fabric			
PVDF-niobate-based	AgNW	300, 2.2	5, 0.09	24
[P(VDF-TrFE)]	3D PMMA/Au	5, 0.1	3.2, 0.01	25
Ce ³⁺ /	Ni-Cu plated	60, 4.7	0.75, 0.02	26
PVDF/Graphene	polyester			
	fabric			
PVDF-Mg	Ni-Cu polyester	65, 2.2	2.6, 0.12	This work
	fabric			

Table S2 A summary or comparison of device materials, electrode materials, and capacitorcharging performances of the AAPNG with the reported nanogenerators.

Active material	Piezoelectric	Reference
	Coefficient (d ₃₃)	
PVDF/CH ₃ NH ₃ PbI ₃	19.7 pC/N	27
Pt/PVDF	44 pC/N	28
PVDF	-57:6 pm/V	29
PVDF	37 pm/V	30
PVDF/GO	~ −30 pC/N	31
PVDF	17.1 pm /V	32
Sugar/PVDF	33 pC/N	33
PVDF	-33 pC/N	34
PVDF/	$54 \pm 5 \text{ pm/ V}$	35
Ag–CNTs		
BTO/P(VDF-TrFE)	35.3 pC/N	36
PVDF/GO	-93.75 pm/V	37
GO doped	63 pm/V	38
Fluorine/PVDF		
PVDF-Mg	33.6 pC/N	This work

 Table S3 Comparison of the piezoelectric coefficient of PVDF-Mg with the reported PVDF

 based nanofibers materials.

Table S4 A summary or comparison of device materials, electrode materials and percentage of piezoelectric energy conversion efficiency ($\sqrt[n]{acoust}$) of the AAPNG with the reported nanogenerators.

Active material	Electrode	Efiiciency (%)	Acoustic sensitivity	References		
PVDF nanofiber	gold	NM	266 mV Pa ⁻¹	39		
$PVDF$ - TiO_2 nanofiber	conducting fabrics	61	26 VPa ⁻¹	40		
PVDF-ZnS nanofiber	Cu-Ni coated	58	3 VPa ⁻¹	41		
	polyester					
PZT based MEMS	NM	0.012	0.13 mV Pa ⁻¹	42		
Ce3+ PVDF/	Ni-Cu plated	NM	15 V Pa ⁻¹	43		
Graphene nanofiber	polyester					
	fabric					
P(VDF-TrFE) nanofiber	gold	60.3	1.3 VPa ⁻¹	44		
PVDF/CH ₃ NH ₃ PbI ₃	Ni-Cu plated	58.5	13.8 VPa ⁻¹	45		
	polyester					
	fabric					
PVDF-Mg	Ni–Cu polyester	1.3	10 VPa ⁻¹	This work		
	fabric					

Figure S1 FE-SEM images of elctrospun nanofibers mat of neat PVDF.

Figure S2. The energy harvesting performance of the nanogenerator upon repeated bending and releasing motion of 5 mm/s.

Figure S3. (a) The current (I)-voltage (V) graph of the fiber based conducting fabric used in the energy harvesting process. A sheet of conducting fabric (4 cm length, 2 cm width and 0.06 mm thickness) was used for I-V curve measurement. From the slope (~0.534) of the I-V curve (linear portion), the estimated conductivity was 17800 S/m. (b) The change of resistance ($\Delta R/R_0$, where R_0 was the initial resistance) measurement of the fabric upon repetitive (c) bending and unbending cycles for longer duration with the speed of 1 mm/s.

References

- 1 X. L. Chen, H. M. Tian, X. M. Li, J. Y. Shao, Y. C. Ding, N. L. An and Y. P. Zhou, *Nanoscale*, 2015, 7, 11536.
- R. S. Dahiya, D. Cattin, A. Adami, C. Collini, L. Barboni, M. Valle, L. Lorenzelli, R.
 Oboe, G. Metta and F. Brunetti, *IEEE Sensors J*, 2011, 11, 3216.
- 3 C. Li, P. –M. Wu, S. Lee, A. Gorton, M. J. Schulz and C. H. Ahn, *J. Microelectromech. Syst.*, 2008, **17**, 334.
- 4 G. Zhao, X. Zhang, X. Cui, S. Wang, Z. Liu, L. Deng, A. Qi, X. Qiao, L. Li, C. Pan, Y. Zhang and L. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 15855.
- 5 A. Wang, M. Hu, L. Zhou and X. Qiang, *Nanomaterials*, 2018, **8**, 1021.
- 6 B. Wang, C. Liu, Y. Xiao, J. Zhong, W. Li, Y. Cheng, B. Hu, L. Huang and J. Zhou, Nano Energy, 2017, 32, 42.
- 7 T. Sharma, S. –S. Je, B. Gill and J. X. J. Zhang, Sens. Actuators A: Physical, 2012, 177, 87.
- 8 Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, and C. Xu, *Smart Mater. Struct.*, 2011, 20, 045009.
- 9 V. Bhavanasi, D. Y. Kusuma and P. S. Lee, Adv. Energy Mater. 4(2014), 1400723.
- 10 W. Guo, C. Tan, K. Shi, J. Li, X. –X. Wang, B. Sun, X. Huang, Y. –Z. Long and P. Jiang, *Nanoscale*, 2018, **10**, 17751.

- 11 Q. –L. Zhao, G. –P. He, J. –J. Di, W. –L. Song, Z. –L. Hou, P. –P. Tan, D. –W. Wang, and M. –S. Cao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 24696.
- 12 S. M. Hosseini and A. A. Yousefi, Org. Electron., 2017, 50, 121.
- T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, L. Zhang, W. Deng and W. Yang, *Nano Energy*, 2020, 72, 104706.
- 14 X. Guan, B. Xu and J. Gong, *Nano Energy*, 2020, 70, 104516.
- K. Maity, S. Garain, K. Henkel, D. Schmeißer and D. Mandal, ACS Appl. Polym. Mater., 2020, 2, 862.
- 16 M. M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J. Michels and K. Asadi, *Nano Energy*, 2019, 62, 594.
- 17 S. K. Ghosh and D. Mandal, 2018, **53**, 245.
- 18 E. J. Lee, T. Y. Kim, S. –W. Kim, S. Jeong, Y. Choi and S. Y. Lee, *Energy Environ. Sci.*, 2018, 11, 1425.
- K. Maity,S. Garain, K. Henkel, D. Schmeißer, D. Mandal, ACS Appl. Mater. Interfaces, 2018, 10, 44018.
- 20 K. Shi, B. Sun, X. Huang and P. Jiang, *Nano Energy*, 2018, **52**, 153.
- 21 S. Siddiqui, D. –I. Kim, E. Roh, L. T. Duy, T. Q. Trung, M. T. Nguyen and N. –E. Lee, *Nano Energy*, 2016, **30**, 434.
- A. Sultana, M. M. Alam, A. Biswas, T. R. Middya and D. Mandal, Transl. Mater. Res. 3(2016), 045001.
- A. Sultana, M. M. Alam, S. K. Ghosh, T. R. Middya and D. Mandal, *Energy*, 2019, 166, 963.

- 24 C. Zhang, Y. Fan, H. Li, Y. Li, L. Zhang, S. Cao, S. Kuang, Y. Zhao, A. Chen, G. Zhu and Z. L. Wang, ACS Nano, 2018, 12, 4803.
- 25 L. Zhang, J. Gui, Z. Wu, R. Li, Y. Wang, Z. Gong, X. Zhao, C. Sun and S. Guo, *Nano Energy*, 2019, **65**, 103924.
- 26 C. Brosseau, P. Queffelec, and P. Talbot, J. Appl. Phys., 2001, 89, 4532.
- A. Sultana, S. K. Ghosh, M. M. Alam, P. Sadhukhan, K. Roy, M. Xie, C. R. Bowen, S. SarkarS, S. Das, T. R. Middya and D. Mandal, *ACS Appl. Mater. Interfaces*, 2019, 11, 27279–27287.
- 28 S. K. Ghosh and D. Mandal, *Nano Energy*, 2018, **53**, 245–257.
- 29 Z. C. Pan, L. Lin, J. Huang and Z. Ou, Smart Mater. Struct., 2014, 23, 025003.
- 30 K. Maity and D. Mandal, ACS Appl. Mater. Interfaces, 2018, 10, 18257–18269.
- 31 K. Roy, S. K. Ghosh, A. Sultana, S. Garain, M. Xie, C. R. Bowen, K. Henkel, D. Schmeißer and D. Mandal, ACS Appl. Nano Mater., 2019, 2, 2013–2025.
- 32 N. Soin, T. H. Shah, S. C. Anand and J. Geng, *Energy Environ. Sci.*, 2014, 7, 1670–1679.
- 33 K. Maity, S. Garain, K. Henkel, D. Schmeißer and D. Mandal, ACS Appl. Mater. Interfaces, 2018, 10, 44018–44032.
- 34 B. –S. Lee, B. Park, H. -S. Yang, J. W. Han, C. Choong, J. Bae, K. Lee, W. –R. Yu, U. Jeong, U. –I. Chung, J. –J. Park and O. Kim, ACS Appl. Mater. Interfaces, 2014, 6, 3520–3527.
- 35 M. Sharma, V. Srinivas, G. Madras and S. Bose, *RSC Adv.*, 2016, 6, 6251.
- 36 X. Hu, X. Yan, L. Gong, F. Wang, Y. Xu, L. Feng, D. Zhang and Y. Jiang, ACS Appl.
 Mater. Interfaces, 2019, 11, 7379–7386.
- 37 X. Liu, J. Ma, X. Wu, L. Lin and X. Wang, ACS Nano, 2017, 11, 1901–1910.

- 38 A. Gebrekrstos, G. Madras and S. Bose, *ACS Omega*, 2018, **3**, 5317–5326.
- 39 C. Lang, J. Fang, H. Shao, X. Ding and T. Lin, Nat Commun, 2016, 7, 11108.
- 40 M. M. Alam, A. Sultana and D. Mandal, ACS Appl. Energy Mater., 2018, 1, 3103–3112.
- A. Sultana, M. M. Alam, S. K. Ghosh, T. R. Middya and D. Mandal, *Energy*, 2019, 166, 963–971.
- 42 S. B. Horowitz, M. Sheplak, L. N. Cattafesta and T. Nishida, *J. of Micromec. and Microengg.*, 2006, **16**, 13–16.
- 43 S. Garain, S. Jana, T. K. Sinha, and D. Mandal, ACS Appl. Mater. Interfaces, 2016, 8, 7, 4532–4540.
- C. Langa, J. Fanga, H. Shaoa, H. Wanga, G. Yana, X. Dingb, and T. Lina, *Nano Energy*, 2017, 35, 146–153.
- A. Sultana, M. M. Alama, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya, and D. Mandal, *Nano Energy*, 2018, 49,380–392.