Rationally Constructing Nitrogen-Fluorine Heteroatoms on Porous-carbon Derived from Pomegranate-Fruit Peel-waste Towards Efficient Oxygen Reduction Catalyst for Polymer Electrolyte Membrane Fuel Cells

Srinu Akula, *ab Prabakaran Varathan,* Rahul S Menon* and Akhila Kumar Sahu*ab

^a CSIR - Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Taramani, Chennai, Tamil Nadu - 600 113, India.

^b Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu- 630003, India.

*Corresponding authors. E-mail: <u>aksahu@cecri.res.in</u> (A. K. Sahu)

akula526@gmail.com (Srinu Akula).

Fig. S1. The FE-SEM elemental mappings of N-F/PGPC catalyst showing the uniform distribution of heteroatoms (C, O, N and F) in the carbon matrix.

Fig. S2. Hydrodynamic voltammograms of (a) N-PGPC, (b) F-PGPC and (c) N-F/PGPC catalysts measured in O₂-saturaretd 0.1 M KOH at 5 mV s⁻¹ scan rate. The corresponding K-L plots are located in insets.

Fig. S3. (a), (b) CVs and LSVs of N-F/PGPC catalyst at different temperatures measured in O₂-saturated 0.1 M KOH aqueous electrolyte, recorded at 50, 5 mV s⁻¹ respectively. The corresponding E_{Red} , $E_{1/2}$ potentials are pointed in the figures.

Fig. S4. (a), (b) CVs and LSVs of N-F/PGPC catalyst at different weight ratios of PGPC: melamine: NH₄F measured in O₂-saturated 0.1 M KOH aqueous electrolyte, recorded at 50, 5 mV s⁻¹ respectively. The corresponding E_{Red} , $E_{1/2}$ potentials are pointed in the figures.

Fig. S5. (a,c) CVs for N, F optimizations at different mass ratios of PGPC to melamine and PGPC to NH₄F respectively at 50 mV s⁻¹ scan rate respectively, (b,d) the corresponding LSVs at 5 mV s⁻¹ scan rate, recorded at 1600 rpm rotation rate in O₂-saturaretd 0.1 M HClO₄. The corresponding E_{Red} , $E_{1/2}$ potentials are reported.

Fig. S6. Hydrodynamic voltammograms of (a) N-PGPC, (b) F-PGPC and (c) N-F/PGPC catalysts measured in O₂-saturaretd 0.1 M HClO₄ at 5 mV s⁻¹ scan rate. The corresponding K-L plots are pointed in insets.

Fig. S7. Number of electron transfer, HO_2^- produced during ORR process in 0.1 M HClO₄ electrolyte.

Fig. S8. (a), (b) CVs and LSVs of N-F/PGPC catalyst at different temperatures measured in O₂saturated 0.1 M HClO₄ aqueous electrolyte, recorded at 50, 5 mV s⁻¹ respectively. The corresponding E_{Red} , $E_{1/2}$ potentials are pointed in the figures.

Fig. S9. (a), (b) CVs and LSVs of N-F/PGPC catalyst at different weight ratios of PGPC: melamine: NH₄F measured in O₂-saturated 0.1 M KOH aqueous electrolyte, recorded at 50, 5 mV s⁻¹ respectively. The corresponding E_{Red} , $E_{1/2}$ potentials are pointed in the figures.

Fig. S10. Tafel plots and the corresponding slope values for N-PGPC, F-PGPC, N-F/PGPC and Pt_{20%}-C catalysts in the higher potential region- (a) O₂-saturated 0.1 M KOH; (b) O₂- saturated 0.1 M HClO₄ electrolytes.

Table S1. The performance of various catalysts in alkaline electrolyte (KOH/NaOH) developed

 from the renewable sources reported in the literature.

	Source of carbon		Specific / BET Catalyst		Electrochemic al parameters		
G		Synthetic process & doped					Ref.
D. No		elements	surface	loading	(V vs. RHE)		[S]
190.		(pyrolysis temperature / °C)	area (m ²	mg cm ⁻²	Onset	E _{1/2}	
			g ⁻¹)		(V)	(V)	
1.	Ginkgo Leaves	Pyrolysis @900-1100 & N,P,S	486	0.2	0.91	0.76	1
2.	Silk Cocoon	Pyrolysis @700-900 & N,S	377	0.199	0.85	0.71	2
3.	Pulsatilla Chinensis Regel	Pyrolysis @700-1000 & N,P		0.2		0.82	3
4.	China Rose	Pyrolysis @ 900 & N,S, O	1478	0.15	0.87		4
5.	Sweet Osmanthus Fruit	Pyrolysis @ & N,S, P	431	0.31	0.96		5
6.	Chrysanthemum Flowers	Pyrolysis @700-900 & N, S	810	0.12	1.05		6
7.	Sophora Flower	Pyrolysis @700-900 & N,S	1815	0.2	0.92	0.72	7
8.	Mulberry Leaves	Pyrolysis @ 700-900 & N,S	1689	0.204	0.86		8
9.	Lotus Leaves	Pyrolysis @ 800-1000 & N,S	908	0.658	0.87	0.81	9
10.	Silk Cotton	Pyrolysis @ 1000 & N,F	950	0.5	0.86	0.82	10
11.	Waste Lotus Seedpod	Pyrolysis @ 700-900 & N,P	269	0.1	0.87		11
12.	Willow Catkins	Pyrolysis @ 550- 950 & N,P	257	0.204	0.76		12
13.	Shaddock Peel	Pyrolysis @ 600-900 & N, P	548	0.283		0.83	13
14.	Waste Pomelo Peels	Pyrolysis @ 1000 & N,S	869	0.85	0.85		14
15.	Fructus Azedarach	Pyrolysis @ 900 & N,P	1706	0.418	0.94	0.84	15
16.	Eggplant	Pyrolysis @ 900 & K, Cl, O	1051	0.12	0.83	0.71	16
17.	Sweet Potato Vines	Pyrolysis @ 800 & N, S	885	0.1	0.94	0.84	17
18.	Coconut Shells	Pyrolysis @ 1000 & N, P	1216	0.1	0.81	0.78	18
19.	Garlic Stems	Pyrolysis @ 600-1000 & N, P	991	0.247	0.97	0.89	19
20.	Yams	Pyrolysis @ 700-900 & N, S	964	0.12	0.94	0.82	20
21.	Bean Sprout	Pyrolysis @ 900 & N, P	572	0.23	0.93	0.82	21
22.	Cellulose Nano fibrils	Pyrolysis @ 900 & N, S	612	0.25	0.84		22
23.	Basswood Block	Pyrolysis @ 950 & N, S	1438	0.28	0.98	0.86	23
24.	Bamboo Stems	Pyrolysis @ 700-900 & N, S	753	1.0		0.81	24
25.	Sisal Rejects/Rope Industry	Pyrolysis @ 800 & N, S	1419	0.12	0.84		25
26.	Sugarcane Vinasse	Pyrolysis @ 750 & N, S	734	0.1	0.86	0.78	26
27.	Pomegranate Fruit Peels	Pyrolysis @ 900-1100 & N, F	974	0.5	0.92	0.87	This
	5						work

Table S2. Th	e performance	of various	catalysts in	acidic	electrolytes	$(HClO_4/H_2SO_4)$	developed
from the rene	wable sources r	reported in	the literatur	e.			

	Source of carbon		Specific		Electrochemic al parameters (V vs. RHE)		
S.		Synthetic process & doped	/ BET	Catalyst loading			Ref.
		elements	surface				[S]
INO.		(pyrolysis temperature / °C)	area	mg cm ⁻²	Onset	E _{1/2}	
			$(m^2 g^{-1})$		(V)	(V)	
1.	Multiwall carbon nanotubes	Pyrolysis @ 1000 & N, F	321	1.0	0.64	0.55	27
2.	SO ₃ H-PANI/Ketjenblack	Pyrolysis @ 1000 & N, S, F	1000	1.0	0.71	0.63	28
3.	Spent coffee grounds	Pyrolysis @ 1000 & N,F	975	0.5	0.79	0.73	29
4.	Sweet osmanthus fruit	Pyrolysis @ & N,S, P	431	0.31	0.44	0.32	30
5.	Graphene	Pyrolysis @ 900 & B, N, P	800	0.691	0.87	0.64	31
6.	Bombyxmori silk fibroin	Pyrolysis @ 700-1500 & N,O	1018	0.2	0.79	0.62	32
7.	Waste leather	Pyrolysis @ 900 & N, S, Fe	746	0.3	0.82	0.74	33
8.	Sheep horn	Pyrolysis @ 600-900 & N,S	313	0.4	0.81	0.72	34
9.	Sewage sludge	Pyrolysis @ 800 & N, S	265	0.1	0.57	0.51	35
10.	Seaweed	Pyrolysis @ 900 & N, O	1377	0.4		0.60	36
11.	Carbon nanotubes	Pyrolysis @ 900 & N, S	149	0.2	0.52	0.42	37
12.	Keratin	Pyrolysis @ 1000 & N, S	953	0.408	0.45	0.34	38
13.	Graphite nanofibers	Pyrolysis @ 1000 & N, F		1.0	0.78	0.63	39
14.	Carbon nanofibers	Pyrolysis @ 1000 & N, F	709	0.3	0.94	0.81	40
15.	China rose	Pyrolysis @ 900 & N, S, O	1478	0.15	0.59	0.44	41
16.	Chitosan	Pyrolysis @ 600 & N, B	796	0.383	0.79	0.58	42
17.	Cysteine	Pyrolysis @ 800 & N, S	1309	0.408	0.81	0.61	43
18.	Feculae bombycis	Pyrolysis @ 800 & N, S, P	435	0.3	0.64	0.57	44
19.	Fructus azedarach	Pyrolysis @ 900 & N, P	1706	0.418	0.91	0.80	45
20.	Allium cepa	Pyrolysis @ 900 & N, S	1859	0.141	0.63		46
21.	Porous graphene foams	Pyrolysis @ 900 & B, N, P	670	0.2	0.85	0.68	47
22.	Phytic acid super-molecular aggregate	Pyrolysis @ 1000 & N, P, Co	952	0.31	0.91	0.79	48
23.	Porous carbon-CNTs	Pyrolysis @ 800 & N, P, Co		0.24	0.92	0.81	49
24.	Graphitic carbon spheres	Pyrolysis @ 1000 & N, S, Fe	371	0.4	0.85	0.73	50
25.	Carbon nanotubes	Pyrolysis @ 900 & N, O, S	149	0.2	0.44	0.28	51
26.	Dicyandiamide	Pyrolysis @ 900 & N, P	578	0.245	0.6		52
27.	Pomegranate fruit peels	Pyrolysis @ 900-1100 & N, F	974	0.5	0.77	0.65	This work

5. References

- [S1] F. Razmjooei, K. P. Singh and J.-S. Yu, *Catalysis Today*, 2016, **260**, 148-157.
- [S2] Y. Wang, Y. Lei and H. Wang, *RSC Adv.*, 2016, 6, 73560-73565.
- [S3] L. Zhao, *RSC Adv.*, 2017, **7**, 13904-13910.
- [S4] Z. Xiao, X. Gao, M. Shi, G. Ren, G. Xiao, Y. Zhu and L. Jiang, *RSC Adv.*, 2016, 6, 86401-86409.
- [S5] Z. Liu, F. Wang, M. Li and Z.-H. Ni, *RSC Adv.*, 2016, 6, 37500-37505.
- [S6] L. Xu, H. Fan, L. Huang, J. Xia, S. Li, M. Li, H. Ding and K. Huang, *Electrochimica Acta*, 2017, 239, 1-9.
- [S7] X. Li and H. Xu, *ChemistrySelect*, 2018, **3**, 10624-10629.
- [S8] D. He, W. Zhao, P. Li, S. Sun, Q. Tan, K. Han, L. Liu, L. Liu and X. Qu, J. Alloys and Compounds, 2019, 773, 11-20.
- [S9] W. Ye, J. Tang, Y. Wang, X. Cai, H. Liu, J. Lin, B. V. Bruggen and S. Zhou, *Sci. Total Environ.*, 2019, 666, 865–874.
- [S10] S. Akula, B. Balasubramaniam, P. Varathan and A. K. Sahu, ACS Appl. Energy Mater., 2019, 2, 3253-3263.
- [S11] B. Zheng, J. Wang, Z. Pan, X. Wang, S. Liu, S. Ding and L. Lang, *J.Porous Materials*, 2020, 27, 637-646.
- [S12] Y. Ma, J. Zhao, L. Zhang, Y. Zhao, Q. Fan, X. Li, Z. Hu and W. Huang, *Carbon*, 2011, 49, 5292-5297.
- [S13] L. Lu, J. Yu, Z. Wu, J. Fan, W. Lei, Y. Ouyang, X. Xia, G. He and Q. Hao, *Int. J. Hydrogen Energy*, 2019, 44, 26982-26991.

- [S14] Y. Ma, S. You, B. Jing, Z. Xing, H. Chen, Y. Dai, C. Zhang, N. Ren and J. Zou, Int. J. Hydrogen energy, 2019, 44, 16624-16638.
- [S15] L. Han, X. Cui, Y. Liu, G. Han, X. Wu, C. (Charles) Xu and B. Li, Sustain. Energy Fuels, 2020, 4, 2707-2717.
- [S16] B. Li, D. Geng, X. S. Lee, X. Ge, J. Chai, Z. Wang, J. Zhang, Z. Liu, T. S. Andy Hor and Y. Zong, *Chem. Commun.*, 2015, **51**, 8841-8844.
- [S17] S. Gao, L. Li, K. Geng, X. Wei and S. Zhang, *Nano Energy*, 2015, **16**, 408-418.
- [S18] M. Borghei, N. Laocharoen, E. Kibena-P^o Idsepp, L.-S. Johansson, J. Campbell, E. Kauppinen, K. Tammeveski and O. J. Rojas, *Appl. Cat. B: Environmental*, 2017, 204, 394-402.
- [S19] Z. Ma, K. Wang, Y. Qiu, X. Liu, C. Cao, Y. Feng and P. A. Hu, *Energy*, 2018, 143, 43-55.
- [S20] H. Fan, Z. Dong and J. Zhao, *ChemElectroChem*, 2017, 4, 3156-3162.
- [S21] D. W. Lee, J.-H. Jang, I. Jang, Y. S. Kang, S. Jang, K. Y. Lee, J. H. Jang, H.-J. Kim and S. J. Yoo, *Small*, 2019, 1902090-1902097.
- [S22] A. Mulyadi, Z. Zhang, M. Dutzer, W. Liu and Y. Deng, *Nano Energy*, 2017, **32**, 336-346.
- [S23] Z. Tang, Z. Pei, Z. Wang, H. Li, J. Zeng, Z. Ruan, Y. Huang, M. Zhu, Q. Xue, J. Yu and C. Zhi, *Carbon*, 2018, **130**, 532-543.
- [S24] M.-J. Kim, J. E. Park, S. Kim, M. S. Lim, A. Jin, O.-H. Kim, M. J. Kim, K.-S. Lee, J. Kim,
 S.-S. Kim, Y.-H. Cho and Y.-E. Sung, *ACS Catal.*, 2019, 9, 3389–3398.
- [S25] D. M. Fernandes, A. S. Mestre, A. Martins, N. Nunes, A. P. Carvalho and C. Freire, *Cata. Today*, 2019,
- [S26] A. L. Cazetta, L. Spessato, S. A.R. Melo, K. C. Bedin, T. Zhang, T. Asefa, T. L. Silva, and V. C. Almeida, *Int. J. Hydrogen Energy*, 2020, 45, 9669-9682.

- [S27] S. Akula, V. Parthiban, S. G. Peera, B. P. Singh, S. R. Dhakate, and A. K. Sahu, J. *Electrochem. Soc.*, 2017, 164, F568-F576.
- [S28] S. Akula, S. G. Peera, and A. K. Sahu, J. Electrochem. Soc., 2019, 166, F897-F905.
- [S29] S. Akula and A. K. Sahu, J. Electrochem. Soc., 2019, 166, F93-F101.
- [S30] Z. Liu, F. Wang, M. Li and Z.-H. Ni, *RSC Adv.*, 2016, 6, 37500-37505.
- [S31] C. H. Choi, M. W. Chung, H. C. Kwon, S. H. Parka and S. I. Woo, J. Mater. Chem. A, 2013, 1, 3694-3699.
- [S32] T. Iwazaki, H. Yang, R. Obinata, W. Sugimoto, Y. Takasu, J. Power Sources, 2010, 195, 5840–5847.
- [S33] R. Soni, S. N. Bhange and S. Kurungot, *Nanoscale*, 2019, **11**, 7893-7902.
- [S34] I. S. Amiinu, J. Zhang, Z. Kou, X. Liu, O. K. Asare, H. Zhou, K. Cheng, H. Zhang, L. Mai,
 M. Pan and S Mu, ACS Appl. Mater. Interfaces, 2016, 8, 29408-29418.
- [S35] S. Yuan and X. Dai, *Green Chem.*, 2016, **18**, 4004-4011.
- [S36] Y. Hao, X. Zhang, Q. Yang, K. Chen, J. Guo, D. Zhou, L. Feng and Z. Slanina, *Carbon*, 2018, **137**, 93-103.
- [S37] Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang and D. Su, J. Mater. Chem. A, 2013, 1, 14853-14857.
- [S38] J. Zhang, H. Zhou, X. Liu, J. Zhang, T. Peng, J. Yang, Y. Huang and S. Mu, J. Mater. Chem. A, 2016, 4, 15870-15879.
- [S39] S. G. Peera, A. K. Sahu, A. Arunchander, S. D. Bhat, J. Karthikeyan and P. Murugan, *Carbon*, 2015, 93, 130-142.
- [S40] T. Gong, R. Qi, X. Liu, H. Li and Y, Zhang, Nano-Micro Lett., 2019, 11:9.

- [S41] Z. Xiao, X. Gao, M. Shi, G. Ren, G. Z. Xiao, Y. Zhu and L. Jiang, *RSC Adv.*, 2016, 6, 86401-86409.
- [S42] Z. Lu, J. Wang, S. Huang, Y. Hou, Y. Li, Y. Zhao, S. Mu, J. Zhang and Y. Zhao, *Nano Energy*, 2017, 42, 334-340.
- [S43] J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang, J. Yang, T. Peng, S. Mu, and Y. Huang, ACS Appl. Mater. Interfaces, 2017, 9, 24545-24554.
- [S44] H. Meng, X. Chen, T. Gong, H. Liu, Y. Liu, H. Li, and Y. Zhang, *ChemCatChem*, 2019, 11, 1-8.
- [S45] L. Han, X. Cui, Y. Liu, G. Han, X. Wu, C. (Charles) Xu and B. Li, Sustainable Energy Fuels, 2020, 4, 2707-2717.
- [S46] J. Zhang, J. He, H. Zheng, R. Li, and X. Gou, J. Mater. Sci., 2020, 55, 7464-7476.
- [S47] F. Dong, Y. Cai, C. Liu, J. Liu, J. Qiao, Int. J. Hydrogen Energy, 2018, 43, 12661-12670.
- [S48] T. Najam, S. S. A. Shah, W. Ding, J. Jiang, L. Jia, W. Yao, L. Li, and Z. Wei, Angew. Chem. Int. Ed., 2018, 57, 15101-15106.
- [S49] S. Guo, P. Yuan, J. Zhang, P. Jin, H. Sun, K. Lei, X. Pang, Q. Xu and F. Cheng, *Chem. Commun.*, 2017, 53, 9862-9865.
- [S50] J. Xiao, Y. Xia, C. Hu, J. Xi and S. Wang, J. Mater. Chem. A, 2017, 5, 11114-11123.
- [S51] Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang and D. S. Su, J. Mater. Chem. A, 2013, 1, 14853-14857.
- [S52] Chang Hyuck Choi, Sung Hyeon Park and Seong Ihl Woo, J. Mater. Chem. A, 2012, 22, 12107-12115.