Microwave-assisted green synthesis of levulinate esters as biofuel precursors using calix[4]arene as an organocatalyst under solvent-free conditions

Gabriel Abranches Dias Castro^a, Sergio Antonio Fernandes*

^aGrupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química,
Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
*Corresponding author: Sergio Antonio Fernandes (Tel.: +55-31-3612-6647; E-mail: santonio@ufv.br or sefernandes@gmail.com).

GENERAL TECHNIQUES

Analytical grade commercial solvents and reagents were purchased from Sigma-Aldrich, and used as received. Infrared spectra were recorded as neat using a FT-IR Varian 660 Fourier transform infrared spectrometer. Values are expressed in wavenumbers (cm⁻¹) and recorded in a range of 4000–400 cm⁻¹. NMR spectra were recorded at 25 °C in CDCl₃ and D₂O on a Varian Mercury 300 spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C. All chemical shifts are reported in parts per million (ppm) and were measured relative to the solvent in which the sample was analyzed (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR; D₂O δ = 4.79 for ¹H NMR). Coupling constants (*J*) are reported in hertz (Hz). The chromatograms and spectrum mass was determined for gas chromatography coupled to a mass spectrometer using a SHIMADZU GCMS-QP2010C Ultra mass spectrometer and method with the following specifications: column RTx-5 MS, 30 m, DI 0.25 mm; carrier gas helium; injector temperature: 220 °C; oven temperature was: 40 °C (2 min), ramped to 5 °C min⁻¹ up to 100 ° C (held for 5 min), ramped to 30 °C min⁻¹ up to 200 ° C (held for 5 min).

EXPERIMENTAL PROCEDURES

Synthesis of calix[*n*]arenes

Synthesis of the *p-tert*-butylcalix[4]arene

The synthesis of the *p-tert*-butylcalix[4]arene involving the condensation of the *p-tert*butylphenol, formaldehyde solution with a basic medium and under heating, as shown in Scheme 1, following the methodology described by Gutsche et al¹. The product was obtained as a white solid in 77% yield.

Scheme 1 - Reaction for obtaining the *p-tert*-butylcalix[4]arene.

¹**H NMR** (300 MHz, CDCl₃): 1.21 (s, 36H, H-6), 3.48 (d, 4H, *J* 12.4, CH₂-Ha), 4.28 (d, 4H, *J* 12.4, CH₂-Hb), 7.05 (s, 8H, H-3), 10.34 (s, 4H, OH).

¹³C NMR (75 MHz, CDCl₃): 31.4 (C-6), 32.7 (CH₂), 34.0 (C-5), 125.9 (C-3), 127.6 (C-2), 144.3 (C-4), 146.7 (C-1).

IR (ATR, cm⁻¹): 3150, 3057, 3024, 2952, 1737, 1605, 1480, 1456, 1391, 1362, 1231, 1200, 871, 814, 780.

Fig. S1. ¹H NMR spectrum (300 MHz; CDCl₃) of the *p-tert*-butylcalix[4]arene.

Fig. S2. ¹³C NMR spectrum (75 MHz; CDCl₃) of the *p-tert*-butylcalix[4]arene.

Fig. S3. FT Spectrum of the *p-tert*-butylcalix[4]arene.

Synthesis of the calix[4]arene

The synthesis of calix[4]arene was carried out using *p-tert*-butilcalix[4]arene, phenol and aluminum chloride anhydrous in toluene following the methodology described by Gutsche et al². The system was kept under stirring and nitrogen atmosphere at room temperature for one hour

(Scheme 2). The desired product, a white solid, was obtained in 81% yield after recrystallization in methanol-chloroform.

Scheme 2 - Reaction for obtaining the calix[4]arene.

¹H NMR (300 MHz, CDCl₃): 3.56 (d, 4H, *J* 12.6, H-a), 4.27 (d, 4H, *J* 12.6, H-b), 6.79 (t, 4H, *J* 7.5, H-4), 7.08 (d, 8H, *J* 7.5 Hz, H-3), 10.23 (s, 4H, OH).
¹³C NMR (75 MHz; CDCl₃): 31.9 (CH₂), 122.5 (C-4), 128.5 (C-2), 129.2 (C-3), 149.0 (C-1).
IR (ATR, cm⁻¹): 3152, 3092, 2935, 1593, 1466, 1447, 1410, 1369, 1238, 774, 749.

Fig. S4. ¹H NMR spectrum (300 MHz; CDCl₃) of the calix[4]arene.

Fig. S5. ¹³C NMR spectrum (75 MHz; CDCl₃) of the calix[4]arene.

Fig. S6. FT Spectrum of the calix[4]arene.

Synthesis of the *p*-sulfonic acid calix[4]arene (CX4SO₃H)

Catalyst *p*-sulfonic acid calix[4]arene was conducted from calix[4]arene in the presence of concentrated sulfuric acid and heated for four hours as described by Gutsche et al³ (Scheme 3). The product was obtained in 75% yield as a solid white.

Scheme 3 - Reaction for obtaining of the *p*-sulfonic acid calix[4]arene (CX4SO₃H).

¹H NMR (300 MHz, D₂O): 3.84 (s, 8H, CH₂), 7.39 (s, 8H, H-3).
¹³C NMR (75 MHz, D₂O): 30.7 (CH₂), 126.6 (C-3), 128.2 (C-2), 135.8 (C-4), 151.9 (C-1).
IR (ATR, cm⁻¹): 3182, 1705, 1636, 1599, 1455, 1147, 1117, 623.

Fig. S7. ¹H NMR spectrum (300 MHz; D₂O) of the *p*-sulfonic acid calix[4]arene (CX4SO₃H).

Fig. S8. ¹³C NMR spectrum (75 MHz; D₂O) of the *p*-sulfonic acid calix[4]arene (CX4SO₃H).

Fig. S9. FT Spectrum of the *p*-sulfonic acid calix[4]arene (CX4SO₃H).

Fig. S10. Ethyl Levulinate calibration curve. [EL] = Ethyl Levulinate concentration.

Spectrum mass of the all compounds

Ethyl 4-oxopentanone

GC/MS *m/z* (abundancy %): 144 (4, M+), 129 (21), 99 (71), 43 (100).

Methyl 4-oxopentanone

GC/MS *m/z* (abundancy %): 130 (5, M+), 115 (21), 99 (30), 55 (25), 43 (100).

GC/MS m/z (abundancy %): 158 (4, M+), 143 (8), 117 (10), 99 (83), 74 (30), 43 (100).

Isobutyl 4-oxopentanone

GC/MS *m/z* (abundancy %): 172 (1, M+), 157 (5), 117 (15), 99 (100), 74 (43), 43 (87).

Dodecyl 4-oxopentanone

GC/MS *m/z* (abundancy %): 168 (1, M+), 140 (5), 111 (25), 97 (55), 83 (75), 69 (86), 55 (100), 43 (75).

Butyl 4-oxopentanone

GC/MS *m/z* (abundancy %): 172 (1, M+), 157 (5), 117 (13), 99 (100), 74 (42), 43 (90).

Pentyl 4-oxopentanone

GC/MS m/z (abundancy %): 186 (1, M+) 172 (1), 157 (1), 117 (15), 99 (90), 74 (42), 43 (100).

Isopropyl 4-oxopentanone

GC/MS *m/z* (abundancy %): 158 (1, M+), 143 (5), 117 (10), 99 (86), 74 (30), 43 (100).

Octan-2-yl 4-oxopentanone

GC/MS m/z (abundancy %): 229 (1, M+), 129 (7), 117 (15), 99 (100), 71 (20), 56 (25), 43 (40).

Tert-butyl 4-oxopentanone GC/MS *m/z* (abundancy %): 117 (23), 99 (92), 57 (100), 43 (80).

The characterization of esters E1, E2, E3 and E6 can be found in the work of Vinculano *et al*⁴, that of the ester E4 in latos *et al*⁵, that of the ester E7, E8 e E10 in the work of Yang *et al*⁶, and that of the ester E9 ester in Melchiorre *et al*⁷.

Referências

- 1 C. Gutsche and M. Iqbal, *Org Synth*, 1990, **68**, 234.
- A. Casnati, N. Della Ca', F. Sansone, F. Ugozzoli and R. Ungaro, *Tetrahedron*, 2004, **60**, 7869–7876.
- S. Shinkai, S. Mori, T. Tsubaki, T. Sone and O. Manabe, J. Chem. Soc. Perkin Trans., 1987, 2297–2299.
- 4 C. B. Vilanculo, L. C. de Andrade Leles and M. J. da Silva, *Waste and Biomass Valorization*, 2020, **11**, 1895–1904.
- 5 P. Latos, A. Szelwicka, S. Boncel, S. Jurczyk, M. Swadźba-Kwaśny and A. Chrobok, ACS Sustain. Chem. Eng., 2019, 7, 5184–5191.
- 6 F. Yang and J. Tang, *Chem. Select*, 2019, 4, 1403–1409.
- M. Melchiorre, R. Amendola, V. Benessere, M. E. Cucciolito, F. Ruffo and R. Esposito, *Mol. Catal.*, 2020, 483, 110777.