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1 Experimental information

1.1 Volume of algae and solution

The reaction rates that we estimate in this work are
related to the specific experimental conditions the mea-
surements were made in. For example kalg scales with
the number of algae actively performing photosynthe-
sis. This reaction rate would therefore be reduced if
the algal concentration was lower. The experimental
concentration, 2×107 algae/mL is saturated from the
biological point of view, but this means that overall
the cumulated volumes of algae, called Va in this doc-
ument, represent only 1% of the solution (see Fig.1).
It is important to take this into account since the diffu-
sion of a few mediator molecules into algae will barely
affect the solution concentration, but will drastically
change the concentration inside Va. We have to deal
here with a major difference compared to classical
chemical reactions where there is only one reaction
compartment.
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Fig. 1 Alga dimensions and concentration. The radius of
a Chlamydomonas reinhardtii alga is about 5µm. Together
with the algal concentration, this allows to deduce Va, the
cumulated volume of all algae contained in the 2mL algal
suspension, which represents only 1% of the total volume.

1.2 Mediator lipophilicity

Table.1 presents calculated values of logP for some
quinones (Q) and corresponding quinols (QH2) using
Advanced Chemistry Development (ACD/Labs) Soft-
ware V11.02.

R1 R2 R3 R4 Q QH2

C6H5 H H H 1.95 2.39
CH3 H H CH3 1.22 1.39
Cl H H Cl 1.73 2.26

Table 1 Calculated values of logP for quinones and
quinols, depending on their substituents R1, R2, R3 and R4.
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2 Analytical description of the model

2.1 Mathematical formulation

We start by recalling the basis of the model described
in the article and illustrated on the figure 1 of the
main document. The volume of reaction consist of a
volume Vs of solution in interaction with a volume Va

of algae. The following reactions represent the trans-
fer of the molecules Q, and QH2 between these two
volumes:

Q
kin⇀↽
kout

Qa (1)

QH2
kin⇀↽
kout

QH2a (2)

the subscript a being associated to molecules in the
volume Va. k are the first order kinetic reaction rates
where subscript indicates the direction of diffusion (in
or out) across the cell membrane.

In algae, the mediator can be reduced following:

Qa +2H++2e−
kalg−−→ QH2a (3)

, with the reaction rate kalg.

In the solution (at the electrode) the mediator can
be oxidized again, delivering current

QH2
kel−→ Q+2H++2e− (4)

, with the reaction rate kel.

Combining balance equations 1, 2, 3 and 4, one
can write deterministic equations for the concentra-
tions of the 4 species, leading to the system of linear
ordinary differential equations:

d[Q]
dt =−kin[Q]+ Va

V kout [Qa]+ kel[QH2]

d[Qa]
dt =−kout [Qa]+

V
Va

kin[Q]− kalg[Qa]

d[QH2]
dt =−kin[QH2]+

Va
V kout [QH2a]− kel[QH2]

d[QH2a]
dt =−kout [QH2a]+ V

Va
kin[QH2]+ kalg[Qa]

(5)

Because the kinetics equations are first written in
terms of number of molecules, and then rewritten in
terms of concentration, note that the volume ratios Va

V
or V

Va
appear only when there is a change of reference

volume for the considered species.

The set of equations 5 can be written in the vecto-
rial form:

d
−→
X

dt
= M
−→
X (6)

where
−→
X is the state vector of the system, describing

the concentration of each species at any given time:

−→
X =


[Q]

[Qa]

[QH2]

[QH2a]

 (7)

and M is the rate matrix:

M =


−kin

Va
V kout kel 0

V
Va

kin −kout − kalg 0 0
0 0 −kin− kel

Va
V kout

0 kalg
V
Va

kin −kout

 (8)

The rates kin and kout are considered to be inde-
pendent in general, because membrane effects could
favour one way or another. Note that if the transfer
across the membrane is purely diffusive, by assuming
steady state, one can express the rates as a function
of the surface of transfer S, the diffusion coefficient of
the species D and the thickness of the diffusion bound-
ary layer at interface δ :

kpurely diffusive
in =

DS
δ Vs

(9)

kpurely diffusive
out =

DS
δ Va

(10)

In this hypothetical case, one would get the fol-
lowing relationship:

kpurely diffusive
out =

Vs

Va
kpurely diffusive

in (11)

2.2 Estimating the kinetic rates

2.2.1 Equilibrium between inwards and outwards
diffusion across algae (Phase 2)

In the dark (at the begining of the experiment), the
mediator is only in the oxidized state, and the dy-
namical system is reduced to the two first states. If
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one define a subvector:

−→x =

(
[Q]

[Qa]

)
(12)

The dynamics reads:

d−→x
dt

=

(
−kin

Va
V kout

V
Va

kin −kout

)
−→x (13)

The matrix associated has only one eigenvalue λ =

−(kin + kout). We associate to this value the rate con-
stant:

K = kin + kout (14)

Taking into account initial conditions where all the
mediator is out of algae ([Q](t = 0) = [Q0]), the time
solution reads:

(
[Q](t)
[Qa](t)

)
=

[Q]0

Va
V (1+ kin

kout
)

(
Va
V

(
kout
kin

+ e−Kt
)

1− e−Kt

)
(15)

After equilibrium, at steady state the concentra-
tions become:

(
[Q]∞

[Qa]
∞

)
= [Q]0

 1
kin

kout

(
1+ kin

kout

)
1

Va
V

(
1+ kin

kout

)
 (16)

2.2.1.1 Fitting the data Because NPQ is propor-
tional to Qa (NPQ = α [Qa]), the second component of
equation 15 gives the evolution of NPQ:

NPQ = α [Qa]
∞
(
1− e−Kt) (17)

6 experiments have been fitted. The results of
the fits are displayed for each experiment on figure 2.
They are all plotted on figure 2, shifted on the x axis
by their starting time and normalized by their ampli-
tude on the y axis. We see that the data are not very
sparsed. We find K = 2.1× 10−2 s−1 with a standard
error of 0.3 ×10−2 s−1.

2.2.2 Reaction rate of re-oxidation at the elec-
trode (Phase 5)

At the end of the experiment, when the photosynthe-
sis is blocked by DCMU addition, kalg = 0 and the two
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Fig. 2 Fit of the NPQ rise during Phase 2 for various ex-
periments. The blue crosses indicate the raw data and
the orange circles are the selection of the data corespond-
ing to the rise of the NPQ. These data are fitted following
equation 17 and the fit is displayed in green dashed lines.

concentrations QH2 and QH2a become independant of
the two other concentrations (see Matrix 8). We have
again a simple system with only two species to solve.
If one label −→y the vector state:

−→y =

(
[QH2]

[QH2a]

)
(18)

The dynamics reads:

d−→y
dt

=

(
[2]− kin− kel

Va
V kout

V
Va

kin −kout

)
−→y (19)

The coupling matrix of equation 19 has two eigen
values:

λ± =−kel + kin + kout

2

1±
√√√√1− kout kel(

kel+kin+kout
2

)2


(20)

, which predicts a decrease of the current on the form
of a sum of two exponentials with different rate con-
stants k+ =−λ+ and k− =−λ−.

2.2.2.1 Data Figure 3 shows that this double ex-
ponential is observed in all experiments. Taking into
account all fits, we get the following experimental val-
ues:

k+ = 7.07×10−2±2.91×10−3 s−1 (21)

k− = 5.58×10−3±3.84×10−4 s−1 (22)
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Fig. 3 Fit of the current decrease during Phase 5. The
raw experimental data are indicated by blue crosses. The
fit follows I(t) = c+ e−k+ t + c− e−k− t . c+ and c− are con-
stants linked to the boundary conditions (How much QH2

and QH2a are present when the light is switched off). The
rates k+ and k− are linked to the eigen values of equa-
tion 20: k± =−λ±.

We have 3 unknowns kin, kout and kel for 3 equa-
tions :



K = kin + kout (23a)

k+ = kel+kin+kout
2

(
1+
√

1− kout kel(
kel+kin+kout

2

)2

)
(23b)

k− = kel+kin+kout
2

(
1−
√

1− kout kel(
kel+kin+kout

2

)2

)
(23c)

By taking the values obtained in the last section
for K, and the values obtained in this section for k+
and k−, one can solve numerically the equations 23.
We get kin = 1.88×10−2 s−1, kout = 2.17×10−3 s−1 and
kel = 2.53× 10−2 s−1. Be aware that these values are
not based on one single experiment, but on the aver-
age. Therefore it only give the correct order of mag-
nitude. See main text for the results obtained on each
experiments. Our point here is that these values en-
able to do Taylor expansion of the square root in equa-
tion 20. Indeed the parameter

ξ =
kout kel(

kel+kin+kout
2

)2 (24)

is small compared to 1 (numerically, we find ξ ∼ 0.1).

Keeping only higher order terms in the Taylor ex-
pansion of equation 20 gives:

k+ = −λ+ ≈ kin + kout + kel (25)

k− = −λ− ≈ kout (26)

2.2.3 Full system (for description of Phase 3)

For the description of Phase 3, one needs to consider
the full system described by the matrix 8. This matrix
has three non null eigen values:



λ = −kin− kout (27a)

λ̃+ = − K̃
2

(
1+
√

1−4 kalgkel+kalgkin+kelkout

K̃2

)
(27b)

λ̃− = − K̃
2

(
1−
√

1−4 kalgkel+kalgkin+kelkout

K̃2

)
(27c)
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Fig. 4 Fit of the current rise during Phase 3. The raw ex-
perimental data are indicated by blue crosses. The fit fol-
lows I(t) = c0+c1 e−k1 t +c2 e−k2 t +c3 e−k3 t . The constants c
are linked to the boundary conditions. The rates are linked
to the eigen values of equation 27: k1 =−λ , k2 =−λ̃+ and
k3 =−λ̃−.

, where K̃ = kalg + kel + kin + kout . One can perform
the same kind of Taylor expansion that the one done
in the previous section, to find a good approximation
for the three time constants. The first one is the rate
kin + kout characteristic of the transfert rates inwards
and outwards of the algae. The third one associated
to λ̃− is going to be much slower than the two others.
The second one (associated to λ̃+ ) is the fastest : it is
roughly the sum of all the rates:

− λ̃+ ≈ K̃ (28)

Numerically, one do not need this approximation.
As we know the numerical value of kin, kout and kel we
fit the experimental data with the exact equations 27
with only kalg as a free parameter (and the relative
amplitudes of the different terms).

The fits are shown figure 4. We find:

kalg = 0.63±0.07s−1 (29)

2.2.4 Methodology check

The fitting methodology has been numerically checked.
We ran one simulation with known parameters for kin,
kout , kel and kalg in order to obtain the simulated time
evolution of intensity and NPQ. Then we used our
methodology: We fit these two curves in order to ex-
tract values for kin, kout , kel and kalg. The relative error
was always smaller than 2×10−6.

2.3 Modeling toxicity

2.3.1 Screening effect

The light-screening effect is implemented by making
kalg vary over time. The effective kalg depends on
the light intensity perceived by photosynthetic chains,
therefore it depends on the NPQ:

kscreening
alg =

kalg

1+NPQ
(30)

, where kalg is the reduction rate of Qa by illuminated
algae in the absence of quenching (NPQ = 0), and
kscreening

alg its equivalent in the presence of quenching.

2.3.2 Different variations for modeling destruc-
tions of PC

In the main text we described how we modeled the
destruction of PC by oxidative stress due to quinones
with a second order kinetics. Here, we also explore
two other possibility : first order kinetics, and Michael
mechanism.

2.3.2.1 Mechanism deriving from oxidative stress
: first order kinetics Although the destruction of PC
is catalyzed by quinones, it is still possible to imag-
ine a first order kinetics. In this hypothesis, the rate
would be (instead of equation 13 of the main text) :

d fPC

dt
=−k1

tox fPC (31)

where k1
tox is a first order kinetic rate.

2.3.2.2 Michael acceptor like mechanism In the
case of the Michael mechanism, the rate is still of sec-
ond order but the quinone would be degraded after
destruction of a PC. This has been implemented in the
simulation.

2.3.2.3 Comparison Figure 5 compiles all the pos-
sible mechanisms to see the effect of each assumption.
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Fig. 5 Comparison of one typical experiment (A) with different hypotheses. All starting parameters are the same as figure
5 of the main text. (B) screening effect. (C) Trapping effect (same as main text). The row (G, H, I) corresponds to the
second order kinetics already presented in figure 5 of the main text : T (respectively NT) stands for trapping with same
parameters as (B) (respectively no trapping). R (respectively NR) stands for residual activity, φra =2.3% (respectively
φra =0). The line (D, E, F) is analogous with a first order kinetics k1

tox = 2.5× 10−1s−1. The line (J, K, L) corresponds to
Michael mechanism.
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