Supporting information

Unveiling the contribution of singlet oxygen in the photoelectrochemical oxidation of benzyl alcohol

Ramón Arcas, Eduardo Peris, Elena Mas-Marzá* and Francisco Fabregat-Santiago*

*Corresponding authors

1. Zr decorated BiVO₄ photoanodes characterization

Figure S1. Optical and structural characterization of Zr decorated BiVO₄ photoanodes. a) UV-vis Absorption. b) XRD data. c) and d) SEM images.

2. Ferrocene/Ferrocenium (Fc/Fc⁺) couple used as an internal reference

Figure S2. Cyclic voltammetry peak of Ferrocene/Ferrocenium (Fc/Fc⁺). 2mM of ferrocene was used to calibrate the voltage of the reference electrode. Conditions: 100 mM of benzyl alcohol (1), in 0.1 M TBAClO₄ in CH₃CN, using Zr decorated BiVO4 as WE, Pt film as CE, and Ag/AgNO₃ as RE.

3. Effect of water in photoelectrochemical measurements

The effect of water in the CV measurements is shown in Figure S3. Experimental conditions: cyclic voltammetry in 0.1 M TBAClO₄ CH₃CN solution, Zr decorated BiVO₄ as WE, Pt as CE and Ag/AgNO₃ as RE, illumination with an ozone-free Xe lamp 100 mW·cm⁻². In dry condition the solvent was dried, TBAClO₄ was dried by heating at 80°C for 2 days and Zr decorated BiVO₄ was pre-heated at 300°C for 6 days. In not dried condition, the solvent and TBAClO₄ were obtained from ambient conditions, without previous treatment, and the Zr decorated BiVO₄ was the same sample used previously under dry condition. In not dried conditions there is an increase of the photocurrent due to the oxidation of water.

Figure S3. Cyclic voltammetry measurements, humid and dried electrolyte (black and red line, respectively).

4. Electrocatalytic oxidation of benzyl alcohol (1) with Pt and BiVO₄ electrodes in dark

Figure S4. Cyclic voltammetry, of (1), using Pt (grey) or Zr decorated $BiVO_4$ (blue) as WE electrodes in the dark. The photoelectrode response for the oxidation of 1 is not so far from the one obtained using Pt as WE. Conditions: 100 mM of 1, in 0.1 M TBAClO₄ in CH₃CN, using Pt film as CE and Ag/AgNO₃ as RE.

5. Detection and quantification of H₂O₂

Detection and quantification of H_2O_2 were done by ¹H NMR. The signal of H_2O_2 in the ¹H NMR spectrum of the chronoamperometry experiments was assigned by comparison with the signal of pure H_2O_2 in the same deuterated solvent. The quantification was done using anisole as an integration reference standard.

Figure S5. a) and b)¹H NMR of H_2O_2 , benzyl alcohol and anisole, in a molar ratio 1:1:1, in CD₃CN. From this data, it can clearly be observed the signal for H_2O_2 , and its integration using anisole as an integration reference standard; c) ¹H NMR of a chronoamperometry experiment at V_{oc} , where H_2O_2 can be detected and quantified.

6. Cyclic voltammetry of benzyl alcohol (1) using Zr decorated BiVO4 as WE under visible light

Figure S6 Cyclic voltammetry in dark or illuminating only with visible light, in the absence or presence of 1 (100 mM), in 0.1 M TBAClO₄ in CH₃CN, using Zr decorated BiVO₄ as WE, Pt film as CE and Ag/AgNO₃ as RE,

7. Effect of atmosphere, light and DABCO, a ${}^{1}O_{2}$ quencher, in anthracene and 1 solution under illumination

Solutions of anthracene or **1** illuminated with different light conditions under different atmospheres, in the presence or absence of DABCO as ${}^{1}O_{2}$ quencher. The reactions do not occur in the absence of UV light, O_{2} or under the presence of DABCO.

Entry	Substrate	Light conditions	Atmosphere	DABCO	Conversion ^a
1	anthracene	UV	O ₂	×	\checkmark
2	anthracene	vis	O ₂	×	very low
3	anthracene	UV	N_2	×	×
4	anthracene	UV	O_2	\checkmark	×
5 ^b	1	UV	N_2	×	×
6 ^b	1	vis	O_2	×	×
7 ^b	1	UV	O_2	\checkmark	×

Table S1. The reaction of solutions of anthracene or 1 under different conditions

Reaction conditions: 3 mM of the substrate in 2 mL of CD₃CN, during 30 min. DABCO added in a 1:1 molar ratio with respect to the substrate. ^{a1}H NMR conversion. ^b100 mM of the substrate in 15 mL of CH₃CN.