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Preliminary photocatalytic study: 

 

Figure S1. Photocatalytic HER performed using CNx based materials with varied loading of {Mo3} 

clusters under 420 nm irradiation. Conditions: [catalyst]: 10 mg, Solvent: 10 ml H2O:MeOH (9:1, 

v:v). Note that the hydrogen production rates in these preliminary measurements were lower than in 

the rest of the study due to a difference in geometry of the reaction cell which resulted in different 

absorbed photon flux.   

 

FTIR analysis: 

FT-IR spectra of CNx, Na2[Mo3S13] and {Mo3}@CNx nanocomposite are displayed in Figure 1b. In 

the FT-IR spectrum of CNx and {Mo3}@CNx hybrid the peaks at around 1639 cm1- can be ascribed 

to C−N stretching vibration modes and the peaks at 1245, 1329 and 1416 cm1- are attributed to the 

aromatic C−N stretching. The sharp peak at 806 cm1- is related to the out-of-plane bending vibration 

of heterocyclic C−N. The broad peak at around 2900−3400 cm1- can be related to the stretching 

modes of the N−H bond and the hydroxyl group of the adsorbed water. For the pure Na2[Mo3S13], 

the spectrum displays a sharp peak at 1138 cm1- which can be assigned to the SO4
2- group in the 

compound which probably is produced during the cation exchange process. However, no distinct sign 

of [Mo3S13]
2-

 cluster is obvious in the FT-IR spectrum of {Mo3}@CNx composite, which can be 

because of the little amount of {Mo3} in the hybrid and also existence of CNx. 



S3 

 

 

Figure S2. XPS C 1s and N 1s spectra of CNx-{Mo3} 

 

 

 

Figure S3. Thermogravimetric analysis of the CNx materials with different {Mo3} cluster loadings 

in air. 
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Figure S4. Effect of sonication on photocatalytic HER for (a) CNx and (b) CNx-{Mo3} 

under 420 nm irradiation. Conditions: [catalyst] : 10 mg, Solvent: 10 ml H2O:MeOH (9:1, v:v), in 

absence of any additional electron donors. 

 

 

 

 

 

Figure S5. (a) H2 evolution during long-term (24 hours) irradiation.  (b) Effect of electron donor 

addition (0.1M ascorbic acid) on photocatalytic HER in presence of CNx under 420 nm irradiation. 

Conditions: [catalyst] : 10 mg, Solvent: 10 ml H2O:MeOH (9:1, v:v). 
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Figure S6. fs-TAS spectra of CNx-{Mo3} dispersions in H2O upon excitation at 325 nm at 10 ps delay 

times. The figure displays the raw data. 
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Figure S7. (a) Time-resolved photoluminescence decay curves of Pt functionalized CNx samples after 

385 nm photoexcitation. The samples were prepared by drop casting. (b) fs-TAS spectra at 10 ps 

delay of CNx-Pt dispersions in H2O upon excitation at 325 nm and corresponding (c) fs-TAS decay 

kinetics obtained by spectrally integrating the transient absorption data in different probe wavelength 

ranges. A quantitative analysis of the transient absorption data indicates, that the kinetics can be 

described by a power law model. The exponent of the power law is smaller than unity (∼0.43), 

suggesting that trapping/detrapping plays a significant role in excited state dynamics of the CNx-Pt 

samples. This is consistent with the comparably slow time scale for the recombination process. 
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Figure S8. Species-associated emission spectra of CNx-{Mo3} with respective lifetimes (black lines 

present emission from the short-lived photoluminescence (< 1ns), while the red spectra reflect the 

spectra distribution of the long-lived emission with lifetimes ranging from 3.0 to 5.5 ns). The lifetimes 

are obtained by a global fit of the two‐dimensional streak camera data with a biexponential model. 

The experimental response function of the streak camera measurements is 0.06 ns wide. 

 

  

Figure S9. fs-TAS smoothed spectra of CNx-{Mo3} dispersions in H2O. The spectra were recorded 

upon 325 nm excitation at different delay times. 
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Figure S10. fs-TAS decay of CNx-{Mo3} dispersions in H2O integrated within NIR regions upon 325 

nm excitation. 

 

 

 

Theoretical calculations: 

Density Functional Theory (DFT) calculations were performed using the Vienna Ab initio Simulation 

Package (VASP) version 5.4.4 using the projector-augmented wave (PAW) method to represent the 

basis set.1–5 For accuracy of the electronic properties, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid 

functional was employed.6, 7 The screening parameter m in HSE was set at 0.2 Å-1 and the exchange 

parameter a was 0.25. Grimme’s D3 dispersion correction was used to describe long range dispersive 

interactions.8, 9 The wavefunction was optimized to an accuracy of 10-6 eV while geometries were 

relaxed until the forces reached below 5·10-2 eV Å-1. Gaussian finite-temperature smearing was 

employed with a smearing width of 0.01 eV. A plane wave energy cut-off of 400 eV for both {Mo3} 

and CNx. To offset the spurious interactions between the periodic images, vacuum was introduced 

along the z-direction (~20 Å) for CNx and {Mo3} was placed to the center of cubic vacuum box (40 

Å) with dipole corrections. Integration in the reciprocal space was performed on a 5 x 5 x 1 

Monkhorst–Pack k-grid mesh. For implicit solvation effects in water, the GLSSA13 solvent model 

implemented in the VASPsol extension was invoked,10-12 using a dielectric constant of bulk water at 

room temperature of 78.4. 
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Figure S11. Scheme of the structure {Mo3} employed in DFT calculation and HOMO-LUMO energy. 
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