Supporting Information

A facile approach on Saccharum spontaneum derived porous carbon-based supercapacitor for excellent energy storage performance in redox active electrolyte

R. Samantray^{a*}, M. Karnan^{b,d}, Vivekanand^b, K. Subramani^b, C. Jesica Anjeline^c, S.C. Mishra^a and M. Sathish^{b,d*}

^aDepartment of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela - 769 008, Odisha, India.

^bElectrochemical Power Sources Division, CSIR - Central Electrochemical Research Institute, Karaikudi – 630 003, Tamil Nadu, India.

^cElectro organic and Materials Electrochemistry Division, CSIR - Central Electrochemical Research Institute, Karaikudi – 630 003, Tamil Nadu, India.

^dAcademy of Scientific and Innovative Research (AcSIR),

Ghaziabad-201 002, India.

Figure S1. (a) Selected area of TEM image (b) SAED pattern of SZE2-600 and its elemental mapping for (c) C, (d) O and (e) N atoms.

Figure S2. CV and CD profile of (a-b) SZE2-500, (c-d) SZE2-700 and (c-d) SZE2-800 sample at different scan rates and current densites, respectively.

Figure S3. (a) Nyquist plot and (b) Raman spectrum of SZE2-600 electrode before and after 1000 cycles; SEM image of SZE2-600 electrode (c) before and (d) after cyclic stability test.

Table
1 ant

The	Sample	BET specific surface area (m²/g)	Pore volume (cm ³ /g)	Pore diameter (nm)	
	SZE2-500	828	0.743	3.7944	
	SZE2-600	1590	0.895	1.656	
	SZE2-700	1046	0.585	1.656	
	SZE2-800	1128	0.618	1.688	

measured specific surface areas, pore volume and pore diameter of the samples.

 Table S2. The specific capacitance value for all the samples.

Matariala	Specific capacitance (F/g)						
Wraterrais	1 A/g	2 A/g	3 A/g	4 A/g	5 A/g	10 A/g	
SZE2-500	414	336	289	248	211	155	
SZE2-600	561	524	469	425	382	280	
SZE2-700	444	371	311	273	245	173	
SZE2-800	547	476	409	364	322	218	

Carbon source	SSA (m²/g)	Electrolyte	Current density	Sp. Cap. (F/g)	Energy density (Wh/kg)	Power density (W/kg)	Ref.		
Willow wood	2800	6 M KOH	1 A/g	197	23	10000	1		
Sisal fibre	2289	6 M KOH	0.5 A/g	146	11.9	5000	2		
Rice husk	3619	6 M KOH	0.2 A/g	205	7.1	103.2	3		
Carbon aerogels	1681.6	$0.5 \text{ M H}_2 \text{SO}_4$	0.5 A/g	198	26.2	1000	4		
Lignin rich residue	2182	1 TEABF ₄ in ACN	1 mA/cm ²	132	33.4	7400	5		
Hybrid willow	2536	6M KOH	0.1 A/g	162.3	17.5	209	6		
Chestnut shell	1987	6M KOH	0.1 A/g	105.4	-	-	7		
White sugar	717.1	1M Na ₂ SO ₄	1 A/g	242.67	19	750	8		
Laminaria japonica	2000	6M KOH	1 A/g	248	8.6	500	9		
Chestnut shell	1347.9	$1M H_2SO_4$	0.5 A/g	201	-	-	10		
Carbon aerogels	1101	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.2 A/g	124.4	4.32	100	11		
Sulphur doped waste tea	771	6M KOH	1 A/g	144.7	20.1	-	12		
Paulownia flower	1159	6M KOH	1 A/g	297	22.2	247	13		
N, B doped bamboo	171.5	$1M H_2SO_4$	0.2 A/g	318	42.1	95	14		
Shiitake mushroom	2988	6M KOH	0.2 A/g	238	8.2	100	15		
Saccharum Spontaneum	1719	1M H ₂ SO ₄	1 A/g	275	13.2	5607	This work		
SSA - Specific Surface Area; Sp. Cap. – Specific Capacitance; Ref Reference									

Table S3. Comparison table for suitability of present work for supercapacitor application in two-electrode configuration.

References

- 1 J. Phiri, J. Dou, T. Vuorinen, P. A. C. Gane and T. C. Maloney, *ACS Omega*, 2019, **4**, 18108–18117.
- 2 M. Li, H. Xiao, T. Zhang, Q. Li and Y. Zhao, ACS Sustain. Chem. Eng., 2019, 7, 4716–4723.
- 3 H. Zhang, X. He, F. Wei, S. Dong, N. Xiao and J. Qiu, *ACS Sustain. Chem. Eng.*, 2020, acssuschemeng.9b05075.
- 4 Y. Zhang, C. Zhao, W. K. Ong and X. Lu, ACS Sustain. Chem. Eng., 2019, 7, 403–411.
- 5 J. Han, S. Y. Jeong, J. H. Lee, J. W. Choi, J. W. Lee and K. C. Roh, *ACS Sustain. Chem. Eng.*, 2019, 7, 2471–2482.
- 6 G. A. Yakaboylu, T. Yumak, C. Jiang, J. W. Zondlo, J. Wang and E. M. Sabolsky, *Energy and Fuels*, 2019, **33**, 9309–9329.
- 7 L. Cheng, P. Guo, R. Wang, L. Ming, F. Leng, H. Li and X. S. Zhao, Colloids Surfaces A Physicochem. Eng. Asp., 2014, 446, 127–133.
- 8 K. O. Oyedotun, F. Barzegar, A. A. Mirghni, A. A. Khaleed, T. M. Masikhwa and N. Manyala, *ACS Sustain. Chem. Eng.*, 2019, **7**, 537–546.
- 9 J. Wang, F. Qin, Z. Guo and W. Shen, ACS Sustain. Chem. Eng., 2019, 7, 11550–11563.
- 10 G. Dai, L. Zhang, Y. Liao, Y. Shi, J. Xie, F. Lei and L. Fan, , DOI:10.1021/acs.jpcc.9b10587.
- 11 S. Geng, J. Wei, S. Jonasson, J. Hedlund and K. Oksman, , DOI:10.1021/acsami.9b19955.
- 12 S. Yaglikci, Y. Gokce, E. Yagmur and Z. Aktas, *Environ. Technol.*, 2019, **3330**, 1–13.
- 13 J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo and K. Jiang, *Electrochim. Acta*, 2015, **157**, 290–298.
- 14 H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao and L. Wu, *Electrochim. Acta*, 2015, **180**, 241–251.
- 15 P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu and Z. Lei, *Carbon N. Y.*, 2015, **93**, 315–324.