Electronic Supplementary Information

Synchronous Nesting of Hollow FeP Nanospheres into Three-dimensional Porous Carbon Scaffold *via* Salt-template Method for Performance-enhanced Potassiumion Storage

Qiwei Tan,^{‡a} Kun Han,^{‡a} Wang Zhao,^a Ping Li,^{*a} Zhiwei Liu,^b Shengwei Li^a and Xuanhui Qu^a

^a Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China. Email: ustbliping@126.com

^b College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, P.R. China.

‡ Q. Tan and K. Han contributed equally to this work.

$$FeCl_3 + C_6H_8O_7 \cdot H_2O \rightarrow Fe_3O_4 + C + HCl \uparrow + H_2O \uparrow + CO/CO_2 \uparrow$$

$PVP \rightarrow \textbf{N-doped Carbon} + CO/CO_2 \uparrow + H_2O \uparrow$

Note S1 Chemical reactions involved in the formation process of the $Fe_3O_4@3D-PC@NaCl$ during calcination.

Fig. S1 (a) XRD pattern and (b-d) FESEM micrographs of the Fe₃O₄@3D-PC@NaCl precursor obtained after calcination at 700 °C for 2 h in Ar atmosphere.

Fig. S2 (a) XRD pattern, (b-d) FESEM and (e, f) TEM micrographs of the Fe₃O₄@3D-PC precursor.

Fig. S3 XRD patterns of the $Fe_3O_4@3D$ -PC precursor before (0 h) and after phosphorization treatment at 360 °C for 1 h, 3h and 6 h, respectively.

Fig. S4 TEM micrographs of the Fe₃O₄@3D-PC precursor (a, b) before (0 h) and after phosphorization treatment at 360 °C for (c, d) 1 h, (e, f) 3 h and (g, h) 6 h, respectively. (i) The schematic illustration of the transformation process of the Fe₃O₄@3D-PC precursor to the h-FeP@3D-PC.

Fig. S5 (a) XPS survey profile of the FeP@3D-PC.

Fig. S6 (a) XRD pattern, (b) Raman spectrum, (c) N_2 adsorption-desorption profile and (e-f) Pore size distribution profile of the 3D-PC.

Fig. S7 (a-b) FESEM and (c-d) TEM images of the 3D-PC.

Fig. S8 (a) XRD pattern of the s-FeP. (b-c) FESEM images and (d) EDX spectrum of the s-FeP.

Fig. S9 Cyclic voltammetry profiles of the h-FeP@3D-PC recorded at a scan rate of 0.1 mV s⁻¹ for the first three cycles.

Fig. S10 Independent plots of Coulombic efficiency *vesus* cycle number of the h-FeP@3D-PC tested at current density of (a) 50 mA g^{-1} . (b) various current densities from 0.5 to 2 A g^{-1} . (c) 500 mA g^{-1} and (d) 800 mA g^{-1} .

Fig. S11 Cyclic voltammetry profiles of the 3D-PC electrode recorded at a scan rate of 0.1 mV s⁻¹ for the first three cycles.

Fig. S12 (a) Charge-discharge tests and (b) the corresponding potential *vs.* specific capacity curves of the s-FeP electrode tested at 50 mA g⁻¹ for 200 cycles. (c) Charge-discharge tests and (d) the corresponding potential *vs.* specific capacity curves of the 3D-PC electrode tested at 50 mA g⁻¹ for 200 cycles. Enlarged Coulombic efficiency versus cycle number plots of (e) s-FeP and (f) 3D-PC electrodes.

Fig. S13 Cycling performance of (a) the s-FeP and (b) the 3D-PC electrodes for potassium storage. Enlarged Coulombic efficiency versus cycle number plots of (c) s-FeP and (d) 3D-PC electrodes.

Fig. S14 (a-c) *Ex-situ* FESEM micrographs of the h-FeP@3D-PC electrode after cycled at 50 mA g⁻¹ for 40 cycles and (c) Corresponding elemental mapping images of the overlapped and P, S, F, C, K, O, Fe and N, respectively.

Fig. S15 (a) Schematic diagram of the mould for powder conductivity measurement, (b) Conductivity results of s-FeP, 3D-PC and h-FeP@3D-PC materials, respectively and (c) Digital photos of three steps to load the powder sample into the mould and apply vertical pressure to the powder.

In a typical procedure, a mould was utilized to hold the powder sample for conductivity measurement tests. Firstly, the powder sample was loaded into the mould, and the upper lid was covered after that. Subsequently, the mould was placed inside a hydraulic machine, and 1.0 MPa external pressure was applied vertically to the mould, therefore, the powder can be pressed as a disk inside the mould, and the conductivity of the powder sample can be measured and recorded simultaneously.

Fig. S16 The corresponding lattice fringe images of the h-FeP@3D-PC material after (a) fully discharged to 0.01 V and (b) Charged to 3.0 V.

Fig. S17 (a) XRD patterns and (b) TGA plots of h-FeP@3D-PC-L and h-FeP@3D-PC-H. FESEM micrographs of (c) h-FeP@3D-PC-L and (d) h-FeP@3D-PC-H.

Fig. S18 Charge-discharge tests of (a) h-FeP@3D-PC-H and (c) h-FeP@3D-PC-L performed at 50 mA g⁻¹. Rate capabilities of (e) h-FeP@3D-PC-H and (g) h-FeP@3D-PC-L measured under various current densities from 0.05~2.0 A g⁻¹. The corresponding enlarged Coulombic efficiency *vesus* cycle number of (b) h-FeP@3D-PC-H and (d) h-FeP@3D-PC-L performed at 50 mA g⁻¹. Rate capabilities of (f) h-FeP@3D-PC-H and (h) h-FeP@3D-PC-L measured under various current densities from 0.05~2.0 A g⁻¹.

Anode Materials	Current density (mA g ⁻ ¹)	Manifest capacity (mAh g ⁻¹)	Cycle Stability (Retention/cycles/Rate)	Ref.
h-FeP@3D- PC	50	343.5		
	1000	171.3	178 mAh g ⁻¹ /500/0.5 A g ⁻¹	This work
	2000	140.2		
FeP/C	50	288.9	$183 \text{ mAb } \text{g}^{-1}/50/0.05 \text{ A } \text{g}^{-1}$	[1]
	1000	78.7	- 185 IIIAII g 75070.05 A g	
YS- FeP@CNBs	100	264	$205 \text{ mAb } \text{g}^{-1}/300/0 \text{ 1 A } \text{g}^{-1}$	[2]
	2000	37	- 205 mAn g 7500/0.1 A g	
CoP⊂NPPCS	50	174	$114 \text{ mAh } \alpha^{-1}/1000/0.5 \text{ A } \alpha^{-1}$	[3]
	2000	54	- 114 IIIAII g /1000/0.5 A g	
FeS ₂ @RGO	50	351	$123 \text{ mAb } \text{g}^{-1}/420/0.5 \text{ A } \text{g}^{-1}$	[4]
	500	151	- 125 IIIAI g / 1 20/0.5 A g	
SnP _{0.94} @rGO	25	294	$106 \text{ mAb } \text{g}^{-1}/100/0.2 \text{ A } \text{g}^{-1}$	[5]
	1000	57	- 100 mAn g /100/0.2 A g	
Black P-C	200	210	$270 \text{ mAb } \text{g}^{-1}/50/0.05 \text{ A } \text{g}^{-1}$	[6]
	500	120	- 270 mAn g 750/0.05 A g	
$K_{0.6}Mn_1F_{2.7}$	20	182	110 mAh g ⁻¹ /10000/0.4 A g ⁻	
	1000	78	1	[/]

 Table S1 A comparative list of some representative anode materials for potassium-ion batteries.

ZnS@C@rGO ·	100	362	- 208 mAh g ⁻¹ /300/0.5 A g ⁻¹	[8]
	500	162		
HPC –	50	211.5	— 90.1 mAh g ⁻¹ /1000/1 A g ⁻¹	[9]
	10000	76.7		
Sn ₄ P ₃ /RGO	100	282	– 156 mAh g ⁻¹ /60/0.6 A g ⁻¹	[10]
	1000	67		
K ₂ Ti ₄ O ₉	30	97	— 40 mAh g ⁻¹ /30/0.1 A g ⁻¹	[11]
	100	80		
OMC	50	286.4	— 146.5 mAh g ⁻¹ /1000/1 A g ⁻¹	[12]
	1000	144.2		

 Table S2 A list of potassiation products of metal phoshide/phosphorus anode materials for KIBs

 reported in literatures.

Anode Materials	Potassiation Products	Investigation Methods	Ref.
FeP/C	$Fe + K_3P$	ex-situ XRD	[1]
SnP _{0.94} @rGO	$KSn + K_{3-x}P$	ex-situ XRD	[5]
Black P-C	КР	ex-situ XRD	[6]
Sn ₄ P ₃ @C	$KSn + K_{3-x}P$	ex-situ XRD, ex-situ HRTEM, SAED	[13]
Sn ₄ P ₃ @CNFs	$KSn + K_3P$	In operando synchrotron XRD, <i>ex-situ</i> HRTEM, SAED	[14]
AC@CoP/NCNTs/CNFs	$Co + K_3P$	ex-situ XRD, ex-situ HRTEM	[15]
3DG/FeP	$Fe + K_3P$	ex-situ XRD, ex-situ HRTEM	[16]
P/C	KP	ex-situ XRD	[17]
Sn ₄ P ₃ /C	$KSn + K_3P$	ex-situ XRD, ex-situ HRTEM, SAED	[18]
Red P/C	КР	ex-situ XRD	[19]
Red P@N-PHCNFs	K ₄ P ₃	ex-situ XRD	[20]
Red P@CN	KP	<i>ex-situ</i> XRD, <i>ex-situ</i> HRTEM, SAED, DFT calculations	[21]
GeP ₅	$GeK + K_4P_3$	In operando synchrotron XRD	[22]
NC@CoP/NC	$Co + K_3P$	ex-situ XRD, ex-situ HRTEM, SAED	[23]
PNR/C	K ₄ P ₃	dQ/dVplots and related analysis	[24]

References

- W. Li, B. Yan, H. Fan, C. Zhang, H. Xu, X. Cheng, Z. Li, G. Jia, S. An and X. Qiu, ACS Appl. Mater. Inter., 2019, 11, 22364-22370.
- F. Yang, H. Gao, J. Hao, S. Zhang, P. Li, Y. Liu, J. Chen and Z. Guo, *Adv. Funct. Mater.*, 2019, 29, 1808291.
- 3. J. Bai, B. Xi, H. Mao, Y. Lin, X. Ma, J. Feng and S. Xiong, Adv. Mater., 2018, 30, 1802310.
- J. Xie, Y. Zhu, N. Zhuang, H. Lei, W. Zhu, Y. Fu, M. S. Javed, J. Li and W. Mai, *Nanoscale*, 2018, 10, 17092-17098.
- X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu, J. Zhang and Z. Quan, *Chem. Eng. J.*, 2019, 370, 677-683.
- I. Sultana, M. M. Rahman, T. Ramireddy, Y. Chen and A. M. Glushenkov, J. Mater. Chem. A, 2017, 5, 23506-23512.
- Z. Liu, P. Li, G. Suo, S. Gong, W. A. Wang, C. Lao, Y. Xie, H. Guo, Q. Yu, W. Zhao, K. Han, Q. Wang, M. Qin, K. Xi and X. Qu, *Energ. Environ. Sci.*, 2018, 11, 3033-3042.
- J. Chu, W. Wang, J. Feng, C. Lao, K. Xi, L. Xing, K. Han, Q. Li, L. Song, P. Li, X. Li and Y. Bao, ACS Nano, 2019, 13, 6906-6916.
- X. Wu, C. W. K. Lam, N. Wu, S. Pang, Z. Xing, W. Zhang and Z. Ju, *Materials Today Energy*, 2019, 11, 182-191.
- W. Yang, J. Zhang, D. Huo, S. Sun, S. Tao, Z. Wang, J. Wang, D. Wu and B. Qian, *Ionics*, 2019, 25, 4795-4803.
- 11. B. Kishore, V. G and N. Munichandraiah, J. Electrochem. Soc., 2016, 163, A2551-A2554.
- 12. W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang and S. Guo, Adv.

Energy Mater., 2018, 8, 1701648.

- D. Li, Y. Zhang, Q. Sun, S. Zhang, Z. Wang, Z. Liang, P. Si and L. Ci, *Energy Storage Materials*, 2019, 23, 367-374.
- 14. W. Zhang, W. K. Pang, V. Sencadas and Z. Guo, Joule, 2018, 2, 1534-1547.
- W. Miao, X. Zhao, R. Wang, Y. Liu, L. Li, Z. Zhang and W. Zhang, J. Colloid Interf. Sci., 2019, 556, 432-440.
- Z. Zhang, C. Wu, Z. Chen, H. Li, H. Cao, X. Luo, Z. Fang and Y. Zhu, *J. Mater. Chem. A*, 2020, 8, 3369-3378.
- X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing, Q. Zhuang and Z. Ju, J. Power Sources, 2018, 378, 460-467.
- 18. W. Zhang, J. Mao, S. Li, Z. Chen and Z. Guo, J. Am. Chem. Soc., 2017, 139, 3316-3319.
- 19. W. C. Chang, J. H. Wu, K. T. Chen and H. Y. Tuan, Adv. Sci., 2019, 6, 1801354.
- 20. Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng, Q. Zhang and Y. Yu, Nano Lett., 2019, 19, 1351-1358.
- 21. P. Xiong, P. Bai, S. Tu, M. Cheng, J. Zhang, J. Sun and Y. Xu, Small, 2018, 14, 1802140.
- 22. W. Zhang, Z. Wu, J. Zhang, G. Liu, N. Yang, R. Liu, W. K. Pang, W. Li and Z. Guo, *Nano Energy*, 2018, **53**, 967-974.
- Y. Yi, W. Zhao, Z. Zeng, C. Wei, C. Lu, Y. Shao, W. Guo, S. Dou and J. Sun, *Small*, 2020, 16, 1906566.
- 24. X. Huang, X. Sui, W. Ji, Y. Wang, D. Qu and J. Chen, J. Mater. Chem. A, 2020, 8, 7641-7646.