Supporting Information

Augmentation in Photocurrent through Organic Ionic Plastic Crystals as Efficient Redox Mediator for Solid-State Mesoscopic Photovoltaic Devices

Keval K. Sonigara,^a Jayraj V. Vaghasiya,^a Jyoti Prasad,^a Hiren K. Machhi,^a Mohammad Shaad Ansari,^{c,d} Mohammad Oureshi,^{*,d} Saurabh S. Soni^{*,a,b}

^aDepartment of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India).

^bP. G. Department of Applied & Interdisciplinary Sciences, IICISST, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India).

^cSchool of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do, 38541, Republic of Korea (Email : <u>shaadansari25@gmail.com</u>)

^dMaterials Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam (India)

Sr.	Dye	electrolyte	OIPC	Additives	Efficiency	Ref
No.					(%)	
01	N719	[P ₁₂₂₂][FSA] (4.71 M), LiI (0.78 M), I ₂ (0.24M), and 4-tBP (3.92 M)	[P ₁₂₂₂]FSA	SiO ₂	7.40	1
02	N719	[P ₁₂₂₂][TFSA] (4.71 M), LiI (0.78 M), I ₂ (0.24M), and 4-tBP (3.92 M)	[P ₁₂₂₂]TFSA	SiO ₂	5.84	1
03	N719	0.600 M BII-6, 0.0300 M I ₂ , 0.100 M GuSCN, and 0.500 M 4-tBP in MeCN	NiL	4.93	2	
04	N719	0.600 M BII-8, 0.0300 M I ₂ , 0.100 M GuSCN, and 0.500 M 4-tBP MeCN	BII-8	NiL	4.06	2
05	N719	20 wt% (PMII), 0.5 M (NBB), 5 wt%	N ₄₄ TFSI	Nil	5.4	3
		(LiTFSI), and 0.05 M I_2 in N_{44} TFSI				
06	Z907	P ₁₂ I/30 wt%PMII/7.5wt%CNTs/1% I ₂	P ₁₂ I	CNTs	5.60	4
07	N719	DMPII:I ₂ :SCN	Hybrid (SCN)	DMPII	6.3	5
08	N719	BMII:I ₂ :SCN	Hybrid (SCN)	BMII	5.6	5
09	CdS	2-Succinonitrile/Na ₂ S	Nil	1.29	6	
10	MK2	40 wt% PMII and CPMPI with 0.1 M LiI and 0.10 M $\rm I_2$	СРМРІ	PMII	5.22	7
11	MK2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				8
12	Z-907	$P_{13}I + 20$ wt % EMII 10 wt % SiO ₂ , 0.2 M I ₂	P ₁₃ I	SiO ₂	4.90	9
13	N719	PMII and BMII in succinonitrile with a mole ratio of 2:1:125, and then LiClO ₄ 5 wt%	PMII + BMII	LiClO ₄	5.50	10
14	N719	MAII-SN, 0.1 M I ₂ , 0.5 M 4-tBP SN		MAII	6.64	11
15	N719	EMII-SN, 0.1 M I ₂ , 0.5 M 4-tBP	SN	EMII	7.46	11
16	N719	SN, I ₂ , DMAIIs, and NMBI in a 100:1:6:0. 5mole ratio	SN	DMBI, DMAIIs	7.8	12
17	Z-907	PMII and I ₂ 0.1M	PMII	-	4.78	13
18	Z-907	0.2 g PMII, 0.8 g P ₁₂ TFSI and 0.0142 g I_2 0.1M	PMII	-	3.92	13
19	Z-907	0.2 g PMII, 0.8 g P ₁₂ TFSI and 0.0142 g I ₂ (0.1M), 0.5M NBB	PMII	-	4.01	13
20	Z-907	0.2 g PMII, 0.8 g P ₁₂ TFSI and 0.0142 g I ₂ 0.1M, 0.5M NBB, 0.1 M LiI	PMII	-	4.64	13

Table S1. Photovoltaic performance reported OIPC based electrolytes with various sensitizers in MPDs

21	Z-907	35 wt% PMII doped P ₁₂ I and 0.2 M I ₂	P ₁₂ I	PMII	4.85	14
22	N719	[C ₁ mpyr][N(CN) ₂], LiI 0.1 M and I ₂ 0.23 M	[C ₁ mpyr][N(CN) ₂	NiL	5.1	15
23	N719	[C4mpyr][I] 0.4 M, LiI 0.1 M, I ₂ 0.1 M, NMB 0.2 M + 5wt% SiO ₂ in SN	[C ₄ mpyr][I]	SiO ₂	4.8	16
24	SK4	0.6M OIPC-I, 0.03M I ₂ , 0.1M 4-tBP	OIPC -I	NiL	7.60	This work
25	SK4	OIPC -I	OIPC -I	NiL	3.17	This work
26	SK4	0.6M OIPC -Br, 0.03M Br ₂ , 0.1M 4-tBP	OIPC -Br	NiL	5.38	This work
27	SK4	OIPC -Br	OIPC -Br	NiL	2.04	This work

Triethyl(methyl)phosphoniumbis-(trifluoromethanesulfonyl)amide [P₁₂₂₂][TFSA], triethyl-(methyl) phosphoniumbis(fluorosulfonyl)amide [P₁₂₂₂][FSA], 1,2-Bis[N-(N0-hexylimidazolium)]ethane diiodide [BII-6], 1,2-Bis[N-(N0-octylimidazolium)]ethane diiodide [BII-8], 5-azoniaspiro [4.4]nonane bis(trifluoromethanesulfonyl)imide [N₄₄TFSI], 1-ethyl-1-methyl pyrrolidinium iodide [P₁₂I], N-ethyl- N-methylpyrrolidinium tetrafluoroborate [C₂mpyrBF₄], 1,2-dimethyl-3-propyl imidazolium iodide [DMPII], 1-butyl-3-methyl imidazolium iodide [BMII], lithium iodide [LiI], iodine [I₂], 1-cyanopropyl-1-methylpyrrolidinium iodide [CPMPI], 1-propyl-3methylimidazolium iodine [PMII], 1-ethyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) Imide [P₁₂TFSI], 1methyl-3-(2-oxo-2-(2,2,6,6-tetramethyl-1-oxyl-4-piperid-oxyl)butyl) imidazolium bis(trifluoromethanesulfonyl)imide [MeIm-TEMPO][TFSI], 1-hexadecyl-3-methyl imidazolium iodide [C₁₆MImI], 1-Propyl-1-methylpyrrolidinium iodine [P₁₃I], Succinonitrile [SN], 1-methyl-3-acetylimidazolium iodide [MAII], 1ethyl-3-methylimidazolium iodide [EMII], 1-alkyl-2,3-dimethylimidazolium iodides N-[DMAIIs], methylbenzimidazole [NMBI], N-butylbenzimidazole [NBB], N-methyl-N-ethylpyrrolidiniumdicyanamide $[C1mpyr][N(CN)_2]$, N-butyl-N-methylpyrrolidinium iodide $[C_4mpyr][I]$, Carbon nanotubes (CNTs), 4-tertbutylpyridine (4-TBP)

Table S2. Photovoltaic performance reported for bromide/tribromide (Br^{-}/Br_{3}^{-}) based electrolytes with various sensitizers in MPDs

Dye	Nano particle	Electrolyte	V _{oc}	Efficiency	Ref
SFD-5	Mg-doped TiO ₂	$0.05 \text{ M Br}_2 + 0.50 \text{ M LiBr} + 0.10 \text{ M BMImBr}$ in AN/VN(9 : 1 in volume).	0.98	1.0	17
SFD-5	Mg-doped TiO ₂	$\begin{array}{l} 0.03 \ M \ Br_2 + 0.65 \ M \ BMImBr + 0.20 \ M \ TPABr + \\ 0.07 MTBP \ + \ 0.07 MGuNCS \ in \ AN/VN/EC/THF \\ (4:3:2:1 \ in \ volume) \end{array}$	1.13	1.1	17
SFD-5	Mg-doped TiO ₂ (MgO, CH3COOH)	$\begin{array}{l} 0.03 \ M \ Br_2 + 0.65 \ M \ BMImBr + 0.20 \ M \ TPABr + \\ 0.07 MTBP \ + \ 0.07 MGuNCS \ in \ AN/VN/EC/THF \\ (4:3:2:1 \ in \ volume) \end{array}$	1.21	1.2	18
TC301	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolytein dry CH_3CN .	1.156	3.68	19,20
TC301	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.8m LiBr,0.08m Br_2 , and 0.5m TBP electrolyte in dry CH3CN	1.041	3.68	19,20
TC302	TiO ₂	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolytein dry CH_3CN .	1.091	4.05	19
TC302	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.8m LiBr,0.08m Br ₂ , and 0.5m TBP electrolyte in dry CH3CN	1.009	3.98	19
TC303	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolytein dry CH_3CN .	1.077	3.28	19
TC303	TiO ₂	0.9m DMBIBr, 0.8m LiBr,0.08m Br ₂ , and 0.5m TBP electrolyte in dry CH ₃ CN	0.969	3.13	19
TC305	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolytein dry CH ₃ CN.	1.033	4.61	19
TC305	TiO ₂	0.9m DMBIBr, 0.8m LiBr, 0.08m Br ₂ , and 0.5m TBP electrolyte in dry CH3CN	0.959	4.54	19
TC306	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolyte in dry CH_3CN .	0.939	5.22	19,20
TC306	TiO ₂	0.9m DMBIBr, 0.8m LiBr, 0.08m Br ₂ , and 0.5m TBP electrolyte in dry CH ₃ CN	0.915	5.07	19,20
TC308	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolyte in dry CH_3CN .	1.045	4.06	19
TC308	TiO ₂	0.9m DMBIBr, 0.8m LiBr, 0.08m Br ₂ , and 0.5m TBP electrolyte in dry CH ₃ CN	0.976	3.85	19
TC309	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.08m Br_2 , and 0.5m TBP electrolyte in dry CH_3CN .	1.015	3.38	19
TC309	TiO ₂ (12+4 μm)	0.9m DMBIBr, 0.8m LiBr, 0.08m Br ₂ , and 0.5m	0.960	3.63	19

		TBP electrolyte in dry CH ₃ CN			
Couma rin 343	TiO ₂ (6 μm)	0.4 M LiBr + 0.04 M Br ₂	0.428	0.70	21
Eosin Y	TiO ₂ (6 μm)	0.4 M LiBr + 0.04 M Br ₂	0.813	2.61	21
N719	TiO ₂ (6 μm)	0.4 M LiBr + 0.04 M Br ₂	0.556	1.05	21
TC301	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr	0.79	1.58	22
TC301	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr with 0.5 M TBP	1.06	2.68	22
TC301	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr with 0.5 M IPIN	0.95	3.30	22
TC301	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr with 0.5 M PIN	0.92	2.81	22
TC302	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr	0.80	1.65	22
TC302	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr with 0.5 M TBP	1.00	2.99	22
TC302	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr with 0.5 M IPIN	0.94	3.76	22
TC302	TiO ₂ (12+4 μm)	0.05 M Br ₂ , 0.6 M BDMIBr with 0.5 M PIN	0.91	3.35	22
SK4	TiO ₂ (9+3 μm)	BMIBr/Br ₂ + 4-TBP	0.956	3.82	This work
SK4	TiO ₂ (9+3 μm)	0.6M OIPC -Br, 0.03M Br ₂ , 0.1M 4-TBP	0.980	5.38	This work
SK4	TiO ₂ (9+3 μm)	OIPC-Br Single component	0.857	2.07	This work

Figure S1 Nyquist plot of OIPCs between two platinum electrodes used to derive diffusion coefficient (Inset: equivalent circuit model used for fitting)

Figure S2. Performance of SK4 dye with conventional reference imidazolium-based electrolyte at 100 mW/cm^2

Calculation for TRPL parameters

The kinetic decay curves are fitted in the using following equation.

$$I(t) = \sum \alpha_i exp\left(-\frac{t}{\tau_i}\right)$$

Where, α_i is the amplitude of decay component, I possess a lifetime of τ , I is the normalized emission intensity, t is the time after pulsed laser excitation.

The average excited state lifetime values for the sample calculated by;

$$<\tau> = \sum rac{{{lpha _1}{{ au _1}}^2} + {{lpha _2}{{ au _2}}^2}}{{{lpha _1}{{ au _1}} + {{lpha _2}{{ au _2}}^2}}$$

$$\tau_{amp} = \frac{\sum \alpha_1 \tau_1 + \alpha_2 \tau_2}{\sum \alpha_1 + \alpha_2}$$

Amplitude weighted lifetime;

Percentage of energy transfer efficiency; $\eta_{ET} = \left(1 - \frac{\tau_{Acceptor + Doner}}{\tau_{Doner}}\right) \times 100$

Electron transfer rate constants for the electron injection $k_{ei} = \left\{ \left(\frac{1}{\tau_{SK4 + TiO2} + OIPC - I} \right) - \left(\frac{1}{\tau_{SK4 + TiO2}} \right) \right\}$

Table S3 TRPL calculation fitting parameter (χ), emission intensity (α_1 , α_2 , α_3), excited-state lifetime (τ_1 , τ_2 , τ_3) and average exciton lifetime ($<\tau>$)

Duo	χ ²	α ₁	α2	α ₃	τ_1	τ2	$ au_3$	< \tau >	Kei	η_{ET}
Dye					(ns)	(ns)	(ns)	(ns)	(ns)	(%)
TiO ₂ -SK4- OIPC-I	0.998	75.589	24.411	-	0.065	0.524	-	0.294	2.48	44.8
TiO ₂ -SK4	1.003	40.703	37.491	21.806	0.094	0.403	1.461	0.652		

Figure S3 Nyquist plots of ss-MPDs were carried out from EIS under a dark condition with forward bias (a) OIPC-I based at 0.6 V and (b) OIPC-Br based devices at 0.9 V (Equivalent circuit for fitting of Nyquist plots)

Figure S5 ¹H-NMR of SK4 dye

Figure S6¹³C-NMR of SK4 dye

References

- S1. Annkatrin Lennert, Klaudia Wagner, Ruhamah Yunis, Jennifer M. Pringle, Dirk M. Guldi, and David L. Officer, ACS Appl. Mater. Interfaces 2018, 10, 32271.
- S2. Minjae Lee, Yong-Hoon Lee, Jong Hyeok Park, U Hyeok Choi, Organic Electronics, 2017, 48, 241e247.
- S3. Hao Li, Shichao Li, Ye Zhang and Feng Yan, RSC Adv., 2016, 6, 346.
- S4. Yun Wang, Pengfei Sun, Shan Cong, Jie Zhao, Guifu Zou, Carbon, 2015, 92, 262.
- S5. Owen Byrne, Aoife Coughlan, Praveen K. Surolia and K. Ravindranathan Thampi, Prog. Photovolt: Res. Appl. 2015, 23, 417.
- S6. Jialong Duan, Qunwei Tang, Benlin He and Haiyan Chen, RSC Adv., 2015, 5, 33463.
- S7. Shan Cong, Yun Wang, Qinghua Yi, Jie Zhao, Yinghui Sun, Mingrong Shenand Guifu Zou, J. Mater. Chem. A, 2014, 2, 20147.
- S8. Shichao Li, Lihua Qiu, Chengzhen Shi, Xiaojian Chen, and Feng Yan, Adv. Mater. 2014, 26, 1266.

- S9. Chengzhen Shi, Lihua Qiu, Xiaojian Chen, Haigang Zhang, Lei Wang, and Feng Yan, ACS Appl. Mater. Interfaces 2013, 5, 1453.
- S10. Junnian Chen, Tianyou Peng, Ke Fan, Renjie Li, Jiangbin Xia, Electrochimica Acta 2013, 94, 1.
- S11. Xiaoming Huang, Da Qin, Xiaolu Zhang, Yanhong Luo, Shuqing Huang, Dongmei Li and Qingbo Meng, RSC Adv., 2013, 3, 6922.
- S12. Daesub Hwang, Dong Young Kim, Seong Mu Jo, Vanessa Armel, Douglas R. MacFarlane, Dongho Kim, Sung-Yeon Jang, Scientific reports, 2013, 3, 3520.
- S13. Qing Li, Xiaojian Chen, Jie Zhao, Lihua Qiu, Yueguang Zhang, Baoquan Sun and Feng Yan, J. Mater. Chem., 2012, 22, 6674.
- S14. Qing Li, Jie Zhao, Baoquan Sun, Bencai Lin, Lihua Qiu, Yueguang Zhang, Xiaojian Chen, Jianmei Lu, and Feng Yan, Adv. Mater. 2012, 24, 945.
- S15. Vanessa Armel, Maria Forsyth, Douglas R. MacFarlane, and Jennifer M. Pringle, Energy Environ. Sci., 2011, 4, 2234.
- S16. V. Armel, J. M. Pringle, P. Wagner, M. Forsyth, D. L. Officer, and D. R. MacFarlane, Chem. Commun. 2011, 47, 9327.
- S17. Kenji Kakiage, Toru Tokutome, Shinji Iwamoto, Toru Kyomen and Minoru Hanaya, Chem. Commun., 2013, 49, 179-180.
- S18. C. Teng, X. Yang, S. Li, M. Cheng, A. Hagfeldt, L. Z. Wu and L. Sun, Chem.-Eur. J., 2010, 16, 13127.
- S19. C. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt and L. Sun, Org. Lett., 2009, 11, 5542.
- S20. Z. Wang, K. Sayama and H. Sugihara, J. Phys. Chem. B, 2005, 109, 22449.
- S21. Omid Bagheri, Hossein Dehghani, and Malihe Afrooz, RSC Adv., 2015, 5, 86191.