Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Ultrathin TiO₂ Interfacial Layer Enhancing the Performance of

Fig. S1 (a-b) UV-Vis absorption spectra for the samples, the insets showed the plots of $(ahv)^{1/2}$ versus the photon energy, and the bandgap energies of FeVO₄ and TiO₂ were estimated to be 2.1 and 3.4 eV, respectively. (c-d) Mott-Schottky plots for the samples, the flat-band potentials of FeVO₄ and TiO₂ were determined to be 0.7 and -0.1 VRHE, respectively.

Fig. S2 Cross-sectional SEM image of FTO with a 300-cycle TiO₂ deposition layer

Fig. S3 XRD patterns of FeVO4 photoanodes annealed at 500 °C and 550 °C

Fig. S4 (a) HRTEM and (b) Electron diffraction patterns of FeVO $_4$ scratched from

FeVO₄/TiO₂/FTO

Fig. S5 Cyclic voltammetry curves of (a) $FeVO_4$ and (b) $FeVO_4/TiO_2/FTO$ electrodes

under dark.

Fig. S6 The photocurrent density at 1.6 V_{RHE} for FeVO₄/TiO₂/FTO electrode with different thickness of TiO₂ underlayers

Fig. S7 The photoluminescence spectra for the electrodes, with the excitation wavelength at 350 nm.

Table S1 The resistance values estimated by fitting the EIS data for the electrodes

Sample	$R_{S}(\Omega)$	$R_B(k\Omega)$	$R_I(k\Omega)$
FeVO ₄ /FTO	54.3 ± 0.2	3.23 ± 0.04	60.9 ± 0.1
$FeVO_4/TiO_2/FTO$ (15 cycles)	54.0±0.2	2.27 ± 0.05	21.4 ± 0.1
FeVO ₄ /TiO ₂ /FTO (100 cycles)	54.6±0.2	8.26±0.09	80.3 ± 0.4

Fig. S9 The theoretical photocurrent spectrum for FeVO₄ electrode obtained by multiplication of its light absorbance spectrum with photoflux spectrum of the simulated sunlight, with the theoretical photocurrent density of 7.5 mA/cm², (b) the photocurrent density-applied potential curves of the photoelectrodes in potassium phosphate (KPi) buffer solution or Na₂SO₃ solution.

Fig. S10 The photocurrent density-applied potential curves over the photoelectrodes for PEC water oxidation reaction