SUPPLEMENTARY MATERIAL (SM)

Mechanism of formaldehyde and formic acid formation on (101)-TiO₂@Cu₄ system through CO₂ hydrogenation

Deobrat Singh^{1,6*}, Sanjeev K. Gupta^{2,*}, Nicola Seriani³, Igor Lukačević⁴,

Yogesh Sonvane¹, P. N. Gajjar⁵ and Rajeev Ahuja^{6,7},

 ¹ Applied Materials Lab, Department of Applied Physics, S. V. National Institute of Technology, Surat, 395007, India
² Computational Materials and Nanoscience Group, Department of Physics and Electronics, St. Xavier's College, Ahmedabad, 380009, India
³The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
⁴Department of Physics, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
⁵Department of Physics, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
⁶Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
⁷Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden

Configuration	R(Cu-O), Å	R(Cu-Ti), Å	R(C-O), Å	R(Cu-Cu), Å	Angle (°)
1(CO ₂)	1.8944-1.8937	2.7108	1.1763-1.1778	2.3537-2.5387	179.29
1(CO)	1.8959-1.8978	2.7738	1.1451	2.3550-2.4605	-
2(CO ₂)	1.8665-1.8839	2.7694	1.2345-1.2712	2.3770-2.4583	135.59
2(CO)	1.8708-1.8944	2.9413	1.1618	2.3691-2.4656	-
3(CO ₂)	1.8957-1.8972	2.7382	1.1752-1.1768	2.3429-2.5491	178.81
3(CO)	1.9210-1.9254	2.7149	1.1445	2.3580-2.4800	-

Table S1. The variation of bond length between atoms and CO_2 molecule angle in three configurations (1, 2 and 3-configurations) of CO_2 and CO adsorbed on the (101)-TiO₂@Cu₄.

Table S2. Calculated absorption energy ($E_{ads.}$), corresponding magnetic moments on 5-fold and 6-fold coordinated Ti atoms (as shown in Figure 1) [$\Delta \mu(\mu_B)$] of the three configurations of CO₂ and CO adsorption on the (101)-TiO₂@Cu₄.

Configuration	Eads. (CO ₂ /CO), eV		Δμ (μ _B) (CO ₂ /CO)	
	With vdW (CO ₂ /CO)	Without vdW (CO ₂ /CO)	With vdW (CO ₂ /CO)	Without vdW (CO ₂)
1	2.94/0.30	2.65/0.30	0.82/0.84	1.20
2	3.00/0.34	2.56/0.39	1.42/1.41	0.75
3	3.03/0.24	2.66/0.29	0.82/0.83	0.83

Table S3. The variation of total Bader charge and charges of CO_2 and CO molecules adsorbed at different sites on the (101)-TiO₂@Cu₄.

Configuration/ Bader charges	1	2	3
$\Delta q(CO_2) / e $	0.30 (loss)	0.17 (gain)	0.34 (loss)
$\Delta q(CO) / \left e \right $	0.20 (loss)	0.08 (loss)	0.19 (loss)

Figure S1: The electronic band structures of (a) (101)-TiO₂ and (b) (101)-TiO₂@Cu₄. The Fermilevel is set at zero.

Figure S2: The electronic band structures of (101)-TiO₂@Cu₄ (a, b) CO2 and CO with conf-1, (c, d) CO2 and CO with conf-2 and (e, f) CO2 and CO with conf-3. The Fermi-level is set at zero.

Figure S3: The optical absorption of (a) (101)-TiO₂ and (b) (101)-TiO₂@Cu₄. The optical absorption spectra with gas molecules on the surface of (101)-TiO₂@Cu₄ (a, b) CO2 and CO with conf-1, (c, d) CO2 and CO with conf-2 and (e, f) CO2 and CO with conf-3.