Supplementary Information

The rational design of hierarchical $CoS_2/CuCo_2S_4$ for threedimensional all-solid-state hybrid supercapacitors with high energy density, rate efficiency, and operational stability

Yogesh Kumar Sonia,^[a] Mahesh Kumar Paliwal,^[a] and Sumanta Kumar Meher*^[a]

^[a]Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India

Email*: skmeher.chy@mnit.ac.in

Scheme S1 Plausible mechanism for the formation of CoS₂/CuCo₂S₄ rod-like microstructure.

Table S1. List of major peaks (binding energy) as shown in the survey XPS profile of $CoS_2/CuCo_2S_4$ and their corresponding attributions

Binding energy (eV)	Attribution
952.30	Cu 2p _{1/2}
932.40	Cu 2p _{3/2}
838.42	shake-up satellite
796.78	shake-up satellite
778.3	Co 2p
712.27	shake-up satellite
530.9	O 1s
284.15	C 1s
224.46	S 2s
160.76	S 2p
121.89	Cu 3s
102.5	Co 3s
74.99	Cu 3p
58.18	Co 3p

Fig. S1 FESEM image of $CoS_2/CuCo_2S_4$, which has been used for EDX elemental mapping.

Fig. S2 Linear-fitted *log v* vs. *log i* plot of $CoS_2/CuCo_2S_4$

Table S2. Comparison of the specific capacitance and charge transfer resistance values of $CoS_2/CuCo_2S_4$ with reported $CuCo_2S_4$ -based materials.

Sl. No.	Sample Name	C _s @Current Density (3-Electrode Setup)	C _s @Scan Rate (3-Electrode Setup)	R _{ct} (Ω) from EIS (3-Electrode Setup)	Reference
1	CuCo ₂ S ₄ dandelion-like	424 F g ⁻¹ @1 A g ⁻¹	-	-	[s1]
2	CuCo ₂ S ₄ @CNT	1690 F g ⁻¹ @1 A g ⁻¹	-	-	[s2]
3	CuCo ₂ S ₄ -rGO	525 F $g^{-1}@1 A g^{-1}$; 425 F $g^{-1}@5 A g^{-1}$; 370 F $g^{-1}@10 A g^{-1}$; 326 F $g^{-1}@15 A g^{-1}$; 303 F $g^{-1}@20 A g^{-1}$	665 F g ⁻¹ @ 7.5 mV s ⁻¹	-	[s3]
4	CNTs@NC@CuCo ₂ S ₄	1604 F g^{-1} @1 A g^{-1} ; 1044 F g^{-1} @2 A g^{-1} ; 1000 F g^{-1} @5 A g^{-1} ; 955 F g^{-1} @10 A g^{-1} ; 896 F g^{-1} @20 A g^{-1}	-	135.6	[s4]
5	CuCo ₂ S ₄ -HNN (hollow nano-needle arrays)	2163 F g ⁻¹ @6 A g ⁻¹	-	-	[s5]
6	CuCo ₂ S ₄ /CNT/Graphene	504 F g ⁻¹ @10 A g ⁻¹	-	-	[s6]

7	$CuCo_2S_4$ nanowire	875 F g ⁻¹ @1 A g ⁻¹	-	1.96	[s7]
8	$CuCo_2S_4$ nanorod array	1536 F g^{-1} @1 A g^{-1} ; 1295 F g^{-1} @5 A g^{-1} ; 1157 F g^{-1} @10 A g^{-1} ; 1026 F g^{-1} @20 A g^{-1}	-	-	[s8]
9	CuCo ₂ S ₄ /GA (graphene aerogel)	$\begin{array}{cccc} {}^{\prime} GA & 668 \ F \ g^{-1} @ 1 \ A \ g^{-1}; & - & - \\ erogel) & 620 \ F \ g^{-1} @ 2 \ A \ g^{-1}; \\ & 588 \ F \ g^{-1} @ 5 \ A \ g^{-1}; \\ & 535 \ F \ g^{-1} @ 10 \ A \ g^{-1}; \\ & 480 \ F \ g^{-1} @ 20 \ A \ g^{-1} \end{array}$		-	[s9]
10	CuCo ₂ S ₄ micro-sphere	516 F g^{-1} @10 A g^{-1}	$\begin{array}{l} 665 \ F \ g^{-1} @ 10 \ mV \ s^{-1}; \\ 482 \ F \ g^{-1} @ 50 \ mV \ s^{-1} \end{array}$	0.26	[s10]
11	CuCo ₂ S ₄ nanoparticle	772 F g^{-1} @2 A g^{-1}	-	-	[s11]
12	CuCo ₂ S ₄ ball-in-ball	442 F g^{-1} @0.5 A g^{-1}	-	-	[s12]
13	CuCo ₂ S ₄ agglomerate nanoparticle	580 F $g^{-1}@1$ A g^{-1} ; 529 F $g^{-1}@2$ A g^{-1} ; 482 F $g^{-1}@3$ A g^{-1} ; 437 F $g^{-1}@4$ A g^{-1} ; 406 F $g^{-1}@5$ A g^{-1} ; 354 F $g^{-1}@7$ A g^{-1}	_	5.65	[s13]
14	CuCo ₂ S ₄ microsphere 1566 F g^{-1} @2 A g^{-1}		-	0.27	[s14]
15	CuCo ₂ S ₄ /NG (N-doped graphene)	1005 F g^{-1} @1 A g^{-1} ; 978 F g^{-1} @3 A g^{-1} ; 949 F g^{-1} @5 A g^{-1} ; 901 F g^{-1} @10 A g^{-1} ; 831 F g^{-1} @20 A g^{-1}	_	_	[s15]
16	C@CuCo ₂ S ₄	854 F g^{-1} @1 A g^{-1} ; 774 F g^{-1} @3 A g^{-1} ; 681 F g^{-1} @5 A g^{-1} ; 597 F g^{-1} @7 A g^{-1} ; 485 F g^{-1} @10 A g^{-1}	_	_	[s16]
17	$CuCo_2S_4$ nanoparticles	449 F g^{-1} @1 A g^{-1} ; 443 F g^{-1} @1.5 A g^{-1} ; 433 F g^{-1} @3 A g^{-1} ; 401 F g^{-1} @5 A g^{-1}	-	0.56	[s17]
18	GQD (graphene quantum dots)/CuCo ₂ S ₄	1725 F g ⁻¹ @0.1 A g ⁻¹	-		[s18]

19	N-doped C-coated CuCo ₂ S ₄	1228 F g^{-1} @1 A g^{-1} ; 1070 F g^{-1} @2 A g^{-1} ; 1003 F g^{-1} @3 A g^{-1} ; 933 F g^{-1} @5 A g^{-1} ; 864 F g^{-1} @10 A g^{-1} ; 784 F g^{-1} @20 A g^{-1}	2002 F g ⁻¹ @5 mV s ⁻¹ ; 1831 F g ⁻¹ @10 mV s ⁻¹ ; 1535 F g ⁻¹ @ 20 mV s ⁻¹ ; 1168 F g ⁻¹ @50 mV s ⁻¹ ; 921 F g ⁻¹ @ 100 mV s ⁻¹	0.39	[s19]
20	CoS ₂ /CuCo ₂ S ₄	2438 F g^{-1} @2 A g^{-1} ; 1995 F g^{-1} @3 A g^{-1} ; 1730 F g^{-1} @4 A g^{-1} ; 1590 F g^{-1} @5 A g^{-1} ; 1492 F g^{-1} @6 A g^{-1}	$\begin{array}{l} 4653 \ F \ g^{-1} @ 10 \ mV \ s^{-1}; \\ 3618 \ F \ g^{-1} @ 20 \ mV \ s^{-1}; \\ 3007 \ F \ g^{-1} @ \ 30 \ mV \ s^{-1}; \\ 2552 \ F \ g^{-1} @ 40 \ mV \ s^{-1}; \\ 2169 \ F \ g^{-1} @ \ 50 \ mV \ s^{-1} \end{array}$	0.23	This work

Table S3. Comparison of the energy density, power density and multiple-cycle capacitanceretention of $CoS_2/CuCo_2S_4$ ||N-rGO ASSHSC device with reported $CuCo_2S_4$ -based hybridsupercapacitor devices.

Sl. No.	Hybrid Supercapacitor Device	Energy Density $(E_D; W h Kg^{-1})$	Power Density (<i>P_D</i> ; W Kg ⁻¹)	Capacitance Retention (%/No. of cycle)	Reference
1	CuCo ₂ S ₄ /CC AC	17.12	194.4	78.4 / 3,000	[s20]
2	CuCo ₂ S ₄ GA	22	1080	70.4 / 5,000	[s9]
3	CuCo ₂ S ₄ /CNT AC	23.2	402.7	85.7 / 10,000	[s21]
4	CuCo ₂ S ₄ /N,S-RGO N,S-RGO	10.8	400	88.9 / 5,000	[s22]
5	CuCo ₂ S ₄ @NiCo ₂ S ₄ AC	23.4	400	71 / 3,000	[s23]
6	CuCo ₂ S ₄ AC	15.0	422.5	94.7 / 5,000	[s17]
7	CuCo ₂ S ₄ AC-ASC	16	240	99.5 / 6,000	[s13]
8	CuCo ₂ S ₄ AC	22	405	62 / 20,000	[s1]
9	CoS ₂ /CuCo ₂ S ₄ N-rGO	32.4	4000	92.8 /10,000	This work

References

- [s1] J. P. Chen, S. Q. Gao, P. P. Zhang, B. Q. Wang, X. C. Wang and F. Liu, *J. Alloys Compd.* 2020, 825, 153984.
- [s2] J.-M. Xu, X.-C. Wang and J.-P. Cheng, ACS. Omega 2020, 5, 1305–1311.
- [s3] L.-L. Liu, K. P. Annamalai and Y.-S. Tao, New Carbon Mater. 2016, 31, 336-342.
- [s4] R. Jin, Y. Cui, S. Gao, S. Zhang, L. Yang and G. Li, *Electrochim. Acta* 2018, 273, 43–52.
- [s5] S. E. Moosavifard, S. Fani and M. Rahmanian, Chem. Commun. 2016, 52, 4517-4520.
- [s6] J. Shen, J. Tang, P. Dong, Z. Zhang, J. Ji, R. Baines and M. Ye, *RSC Adv.* 2016, 6, 13456–13460.
- [s7] S. Liu, Y. Yin, K. S. Hui, K. N. Hui, S. C. Lee and S.-C. Jun, Adv. Sci. 2018, 5, 1800733.
- [s8] S. Cheng, T. Shi, C. Chen, Y. Zhong, Y. Huang, X. Tao, J. Li, G. Liao and Z. Tang, Sci. Rep. 2017, 7, 6681.
- [s9] Z. Tian, X. Wang, B. Li, H. Li and Y. Wu, *Electrochim. Acta* 2019, 298, 321-329.
- [s10] A. T. A. Ahmed, H. S. Chavan, Y. Jo, S. Cho, J. Kim, S. M. Pawar, J. L. Gunjakar, A. I. Inamdar, H. Kim and H. Im, *J. Alloys Compd.* **2017**, *724*, 744–751.
- [s11] Y. Zhu, X. Ji, H. Chen, L. Xi, W. Gong and Y. Liu, RSC Adv. 2016, 6, 84236-84241.
- [s12] Y. H. Lee, B. K. Kang, M. S. Kim, H. W. Choi, D. S. Choi, M. Kumar and D. H. Yoon, *Phys. Status Solidi A* 2018, 215, 1700936.
- [s13] F. Wang, J. Zheng, G. Li, J. Ma, C. Yang and Q. Wang, *Mater. Chem. Phys.* 2018, 215, 121–126.
- [s14] A. Mohammadi, S. E. Moosavifard, A. G. Tabrizi, M. M. Abdi and G. Karimi, *ACS Appl. Energy Mater.* **2019**, *2*, 627–635.
- [s15] M. Guo, J. Balamurugan, T. D. Thanh, N. H. Kim and J. H. Lee, *J. Mater. Chem. A* 2016, 4, 17560–17571.
- [s16] F. Wang, J. Zheng, J. Ma, K. Zhou and Q. Wang, J. Nanopart. Res. 2019, 21, 189.

- [s17] Y. Xu, T. Zhou, X. Cao, W. Zhao, J. Chang, W. Zhu, W. Guo and W. Du, *Mater. Res. Bull.* 2017, 91, 68–76.
- [s18] Y. Huang, L. Lin, T. Shi, S. Cheng, Y. Zhong, C. Chen and Z. Tang, *Appl. Surf. Sci.* 2019, 463, 498–503.
- [s19] Z. Wang, Z. Zhu, Q. Zhang, M. Zhai, J. Gao, C. Chen and B. Yang, *Ceram. Int.* 2019, 45, 21286–21292.
- [s20] T. Xie, Y. Gai, Y. Shang, C. Ma, L. Su, J. Liu and L. Gong, *Eur. J. Inorg. Chem.* 2018, 43, 4711–4719.
- [s21] H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, X. Liu and Y. Fu, *J. Colloid Interface Sci.* **2019**, *549*, 105–113.
- [s22] Z. Li, H. Lv, Z. Wang, A. Gu, X. He and L. Wang, Mater. Res. Express 2019, 6, 085523.
- [s23] L. Ma, T. Chen, S. Li, P. Gui and G. Fang, Nanotechnology 2019, 30, 255603.