Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

All solute PEDOT:PSS mixtures were prepared by mixing a 500µL solution of pristine PEDOT:PSS (Heraeus Clevios PH 1000) with Triton surfactants (Sigma Aldrich) and different amounts of ethanol and IPA (Fujifilm Wako Pure Chemical Co.) using different volume ratios: 1:3, 1:7, and 1:11, where PEDOT:PSS is the lesser volume component of the solution. The obtained solutions were sonicated for 24 hours at room temperature before thin film preparation. The glass substrates (1.5×1.5 cm²) were cleaned by acetone, ethanol and DI water under sonification for 15 min. And then, they were annealed at 170 °C for 20 min before spin-coating process. The ethanol/ IPA solute PEDOT:PSS was spun onto glass slides at 6000 rpm for 60 s, followed by annealing at 170 °C in air for 20 min. Silver paste was applied at four corners of each solute PEDOT:PSS thin film for Hall measurement (Ecopia HMS-3000) using the Van der Pauw method. The thickness of solute PEDOT:PSS on glass was evaluated using the spectroscopic ellipsometry (J. A. Woollam Co.).

After cleaning with acetone, ethanol, and deionized water, and removing the native silicon oxide by 5 % HF etching, both sides of polished n-type Czochralski Si (100) substrates (300 μm, 1–5 Ω •cm) were coated with solute PEDOT:PSS [Fig. 1(a)]. To evaluate the passivation of ethanol or IPA solute PEDOT:PSS, effective carrier lifetime measurement of c-Si substrate was carried out using the microwave photo-conductivity decay (µPCD) under an injection level of 1×10¹⁴ cm⁻³ (KOBELCO, LTA1512EP). Furthermore, quasi-steady state photoconductivity (QSSPC) (Sinton Instruments WCT120) was applied for conductive PEDOT:PSS/c-Si and PEDOT:PSS/ c-Si/ solute PEDOT:PSS to characterize the potential of hybrid c-Si solar cells using ethanol / IPA solute PEDOT:PSS at the backside [Fig. 1(b) and 1(c)]. Herein, the conductive PEDOT:PSS was formed by mixing it with small amount of Ethylene Glycol (Wako, 058-00986) and it possesses high conductivity of 850 S/cm with the thickness of 35 nm. The J_{o} , implied V_{OC} and effective carrier lifetime were extracted using injection level of 1×10¹⁵ cm⁻³. Fabrication of c-Si solar cells were completed with thermal evaporation of 200-nm-thick Al film and 300-nm-thick Ag onto backside and front side of Si solar cells (ULVAC Kiko, Inc VPC-260F), respectively. Current density-voltage (J-V) characteristics were measured by a JASCO YQ-250BX solar simulator under 1-sun illumination, which was also integrated with a monochromator, power meter and Keithley source meter for external quantum efficiency (EQE) measurements.

 Table S1: Chemical structure and physical properties of organic solvents, methanol, ethanol

Name	Chemical structure	Dielectric constant ^a	Absolute viscosity/cp ^b
Methanol	CH₃OH	32.6	0.59
Ethanol	CH ₃ CH ₂ OH	22.4	1.2
Isopropanol		18.3	1.77

and isopropanol.

^{a, b}The dielectric constant values and absolute viscosity of neat solvents obtained from ref. 1 and ref. 2

Figure S1: Digital images of different solute PEDOT:PSS on glass

Table S2: Thickness, sheet resistance and conductivity of ethanol and IPA solute PEDOT:PSSwith volume ratio of 1:3, 1:7 and 1:11.

	Ethanol solute PEDOT:PSS			IPA solute PEDOT:PSS		
Volume ratio	1:3	1:7	1:11	1:3	1:7	1:11
S (S/cm)	2.1	0.024	0.018	2.25	0.42	0.075
R (MΩ/□)	3.0	64	70	0.97	3.3	13
Thickness (nm)	15.2	8.42	5.79	9.16	7.15	5.32

Figure S2: Transmittance of ethanol/ IPA solute PEDOT:PSS on glass with volume ratio of 1:3, 1:7 and 1:11.

Table S3: *Effective carrier lifetimes in average and in maximum extracted from c-Si passivated by ethanol/ IPA solute PEDOT:PSS.*

	Ethanol soluting PEDOT:PSS			IPA soluting PEDOT:PSS			
Volume ratio	1:3	1:7	1:11	1:3	1:7	1:11	
Highest LT (μs)	1096	956	576	622	1072	504	
Average LT (µs)	657	630	324	390	718	312	

 Table S4: Key parameters of PEDOT:PSS/ c-Si/ solute PEDOT:PSS extracted from QSSPC measurements.

	ref	Ethanol solute PEDOT:PSS		IPA solute PEDOT:PSS	
Volume ratio		1:7	1:11	1:7	1:11
τ_{eff} (µs) at injection level of 1x10 ¹⁵ cm ⁻³	18.68	99.30	40.63	103.15	37.79
J ₀ (A/cm ²)x10 ⁻¹²	1.06	0.303	0.665	0.255	0.952
Implied V _{oc} (mV)	547	597	564	599	564

Figure S3: *a) J-V curves; b) External quantum efficiency of PEDOT:PSS/ Si substrate/ solute PEDOT:PSS on the backside.*

 Table S5: Key J-V parameters of PEDOT: PSS/ c-Si/ solute PEDOT: PSS

	J_{SC} (mA/cm ²)	V _{OC}	FF	Eff
		(V)		
Without solute PEDOT:PSS	25.35	0.527	0.65	8.69
With ethanol solute PEDOT:PSS	27.99	0.574	0.62	10.03
With IPA solute PEDOT:PSS	27.63	0.582	0.64	10.26

Reference:

- a. <u>https://en.wikipedia.org/wiki/Main_Page</u>
- b. Y. Xia and J. Ouyang, Journal of Materials Chemistry, 2011, 21, 4927–4936.