Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

> Supporting Information For

Fine-tuning of the water oxidation performance of hierarchical Co₃O₄ nanostructures prepared from different cobalt precursors

Pradnya M. Bodhankar,^{a,b} Avani Chunduri,^b Nainesh Patel, ^b Dattatray S. Dhawale,*^c Ajayan Vinu,^d Hind Aljohani,^e and Pradip B. Sarawade*^{a,b}

^aNational Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai-400098, India

^bDepartment of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai-400098, India

^cGlobal Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, University Drive, Callaghan NSW 2308 Australia

^dQatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar

^eKing Abdullah University of Science and Technology, Jeddah, Western province, Saudi Arabia

Fax: (+91)2652 2222 pradip.sarawade@physics.mu.ac.in, dattatraydhawale@gmail.com

Fig. S1. Low and high magnification SEM and TEM images of Co_3O_4 -S (a, b and c); Co_3O_4 -Ac (d, e and f); Co_3O_4 -N (g, h and i), respectively.

Fig. S2. XPS survey spectra of Co₃O₄-S, Co₃O₄-Ac and Co₃O₄-N nanostructured catalyst.

	Surface atomic composition (%) from XPS				
Catalyst	Co 2p	O 1s	C 1s		
Co ₃ O ₄ -S	23.25	57.91	18.84		
Co ₃ O ₄ -Ac	27.77	56.46	15.78		
Co ₃ O ₄ -N	29.01	54.65	16.34		

Table S1. XPS surface atomic % of Co_3O_4 -S, Co_3O_4 -Ac and Co_3O_4 -N hierarchical nanostructured catalysts.

Fig. S3. N_2 Adsorption-desorption isotherm of obtained from BET measurements for Co_3O_4 -S, Co_3O_4 -Ac and Co_3O_4 -N nanostructured catalyst.

Fig. S4. Linear polarization curves (iR compensated) at a scan rate of 10 mV/s for Co_3O_4 -S, Co_3O_4 -Ac, Co_3O_4 -N, RuO_2 , and GC.

Fig. S5. Potential dependent mass activity curves for Co_3O_4 -S, Co_3O_4 -Ac, Co_3O_4 -N (inset: a bar chart of the mass activity).

Fig. S6. CV curves at various scan rates to determine the double-layer capacitance (Cdl) of Co_3O_4 -S, Co_3O_4 -Ac and Co_3O_4 -N nanostructured catalysts.

Fig. S7. Cyclic voltammetry scan for Co_3O_4 -S, Co_3O_4 -Ac and Co_3O_4 -N nanostructured catalysts at a scan rate of 2 mV/s in 1M KOH.

Electrochemically active surface area [(ECSA /cm²)]

ECSA of each catalyst is measured from double layer charging of the catalytic material. Firstly, the non-faradaic region from CV scan is determined. Multiple CV curves at scan rate of 20, 40, 60, 80 and 100 mV/s are recorded. It is assumed that all the current in this region is due to double layer charging capacitance. Following this, a potential value in the middle region is identified and current associated with this potential value is plotted as a function of scan rate. The slope of which gives the value of double layer capacitance according to the equation given below;

where i_c is the double layer charging current, v is scan rate and C_{dl} is double layer charging capacitance. The electrochemically active surface area is calculated from the following relation;

$$ECSA = \frac{C_{dl}}{C_s}$$

Here, C_s is the specific capacitance of the sample or the capacitance of an atomically smooth planer surface of the material per unit area under identical electrolyte conditions. The value of the specific capacitance for various metal electrodes in alkaline electrolyte have been measured and typical reported value lies in the range from 0.022 to 0.130 mF cm⁻² in KOH solution. We have considered the reported value of 0.027 mF cm⁻² for Co in alkaline solution and ECSA is calculated accordingly.^{1, 2}

Mass activity [MA (A g⁻¹)]

MA was calculated using the following equation given below;

$$MA = \frac{J}{Active \ mass \ of \ catalyst}$$

Here, J is the current density in mA cm⁻² at specific overpotential value of 1.6 V for comparing the electrocatalytic activities of all hierarchical nanostructured electrocatalysts.³

Turnover frequency [TOF (S⁻¹)]

Following equation is used to calculate the TOF of electrochemical reaction.⁴

$$TOF = \frac{j * N_A}{n * A * F * \Gamma}$$

Where,

j = Current density (A/m^2) at a specified overpotential value.

 N_A = Avogadro's constant [6.022*10²³].

n = Number of electrons.

A= Electroactive surface area.

F = Faraday constant [96485 C].

 Γ = Surface concentration of atom on the electrode surface.

Surface concentration of Co₃O₄-S from CV curve

Charge passed calculated by integrating the area under reduction peak from potential vs. current curve.

Calculated area associated with the reduction of Co^{3+} to $Co^{2+} = 0.0471*10^{-3}$ VA

Hence, associated charge = $0.0471*10^{-3}$ VA / 0.002 V/s

The number of electrons transferred = $0.02355 \text{ C} / 1.602*10^{-19} \text{ C}$

 $= 0.0147 * 10^{19}$

Since, the reduction of Co^{3+} to Co^{2+} is a single electron transfer reaction, the number electrons calculated above is exactly the same as the number of surface active sites.

Hence, the surface concentration of Co^{2+} that participated in OER is = $0.0147*10^{19}$

$$TOF \text{ at } 1.53 \text{ V} = \frac{6.12 \times 10^{-3} \times 6.022 \times 10^{23}}{4 \times 0.089 \times 96485 \times 0.0147 \times 10^{19}} = 0.7 \text{ s}^{-1}$$

Catalyst	Exchange current density (A cm ⁻²)	ECSA (cm²)	Mass activity (A g ⁻¹) at 1.65 V Vs RHE	TOF (s ⁻¹) at 1.53 V Vs RHE
Co ₃ O ₄ -S	1.723 x 10 ⁻³	892	98.60	0.7
Co ₃ O ₄ -Ac	1.682 x 10 ⁻³	666	64.11	0.2
Co ₃ O ₄ -N	1.698 x 10 ⁻³	574	54.80	0.1

Table S2. Exchange current density, ECSA, mass activity and TOF values of Co_3O_4 -S, Co_3O_4 -Ac and Co_3O_4 -N hierarchical nanostructured catalysts.

Fig. S8. Post-OER low and high magnification TEM image of Co_3O_4 -S (a & d), Co_3O_4 -Ac (b & e) and Co_3O_4 -N (c & f) respectively.

Table S3: Comparison of recent Co based electrocatalysts for OER active in alkaline media.

			•	Over-		
			Onset	potential	Tafel slope	
Catalyst	Morphology	Electrolyte	potential	potentia	i al el el el el el	Ref.

			(V)	(mV) at 10		
				mA cm ⁻²		
AuCoCu	Branched			====		F
alloy	nanostructure	0.1M KOH	1.57	596	60	5
Ni _{0.7} Co _{0.3} O _x	Hexagon	0 1М КОН	1.62	394	-	6
	nanoplate	0.11111.011				
Ce-MnCo ₂ O ₄	Microrod	1M KOH	-	390	125	7
CuCoO ₂	Nanoplate	1M KOH	1.55	390	70	8
Co-Nitrogen						
co-doped	Nanosheet	0.1M KOH	-	426	69	9
Graphene						
	Crumpled,			371	63	10
Co _{1-x} S/N-S-G	silk-like	0.1M KOH	-			
Co ₃ O ₄ @BP	Lamellar	1M KOH	_	400	128	11
CeO ₂ /Co ₃ O ₄	Spherical	0.3M KOH	-	386	165.7	12
Co ₃ V ₂ O ₈	Nanoparticles	1M KOH	1.58	359	65	13
	Semi	1М КОН	1.52	425	44	14
CO_3O_4	spherical					
	flower-		1.51	356	60	15
CO_3O_4	shaped	TIM NAOH			08	
Co ₃ O ₄	Thin film	1M NaOH	-	377	58.1	16
Co ₃ O ₄ -F127	Sheetlike	1 M NaOH	-	350	90	17
Co ₃ O ₄	Nanosheets	1M KOH	1.52	374	60	18
Porous	Wrinkled	1М КОН		262	59 19	10
Co ₃ O ₄	shee-tlike		1.48	368		19
	Nanoflakos	114 KOU	1.60	280	10	20
	Nationakes		1.00	560	40	
	Hybrid fibers	0.1M KOH	1.53	362	54	21
Co ₃ O ₄ @GF_	Flat sheets	1М КОН	0.82 V	440	60.3	22

KMnO ₄						
Co-N/Co- O@N-C nanohybrid	Hierarchical porous nanoarchitect ure	0.1M KOH	-	370	81.12	23
LiCoO ₂	-	0.1M KOH	1.55	350	52	24
Co ₃ O ₄ -S	Marigold flower-like	1М КОН	1.45	330	78	This work
Co₃O₄-Ac	Self- assembled flower	1М КОН	1.54	380	86	This work
Co ₃ O ₄ -N	Urchin-like	1М КОН	1.55	390	90	This work

References

- 1. G. Wu, N. Li, D.-R. Zhou, K. Mitsuo and B.-Q. Xu, *Journal of Solid State Chemistry*, 2004, **177**, 3682-3692.
- 2. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *Journal of the American Chemical Society*, 2013, **135**, 16977-16987.
- 3. N.-U.-A. Babar and K. S. Joya, *ACS Omega*, 2020.
- 4. S. Anantharaj, S. Ede, K. Karthick, S. S. Sankar, K. Sangeetha, P. Karthik and S. Kundu, *Energy & Environmental Science*, 2018, **11**, 744-771.
- 5. H. Gong, W. Zhang, F. Li and R. Yang, *Electrochimica Acta*, 2017, **252**, 261-267.
- 6. J. Chi, H. Yu, G. Li, L. Fu, J. Jia, X. Gao, B. Yi and Z. Shao, *RSC advances*, 2016, **6**, 90397-90400.
- 7. X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang and G. Wang, *ACS Sustainable Chemistry & Engineering*, 2018, **7**, 1169-1177.
- 8. D. Xiong, Z. Du, H. Li, J. Xu, J. Li, X. Zhao and L. Liu, *ACS Sustainable Chemistry & Engineering*, 2018, **7**, 1493-1501.
- 9. X. Qiao, S. Liao, R. Zheng, Y. Deng, H. Song and L. Du, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 4131-4136.
- 10. X. Qiao, J. Jin, H. Fan, Y. Li and S. Liao, *Journal of Materials Chemistry A*, 2017, **5**, 12354-12360.
- 11. F. Shi, K. Huang, Y. Wang, W. Zhang, L. Li, X. Wang and S. Feng, ACS applied materials & *interfaces*, 2019, **11**, 17459-17466.
- 12. S. A. Khan, S. B. Khan and A. M. Asiri, *Journal of Materials Science: Materials in Electronics*, 2016, **27**, 5294-5302.
- 13. M. Xing, L.-B. Kong, M.-C. Liu, L.-Y. Liu, L. Kang and Y.-C. Luo, *Journal of Materials Chemistry A*, 2014, **2**, 18435-18443.
- 14. S. Asadizadeh, M. Amirnasr, S. Meghdadi, F. F. Tirani and K. Schenk, *International Journal of Hydrogen Energy*, 2018, **43**, 4922-4931.

- 15. C. Ranaweera, C. Zhang, S. Bhoyate, P. Kahol, M. Ghimire, S. Mishra, F. Perez, B. K. Gupta and R. K. Gupta, *Materials Chemistry Frontiers*, 2017, **1**, 1580-1584.
- 16. H. S. Jeon, M. S. Jee, H. Kim, S. J. Ahn, Y. J. Hwang and B. K. Min, *ACS applied materials & interfaces*, 2015, **7**, 24550-24555.
- 17. P. Jash, V. Aravind and A. Paul, *New Journal of Chemistry*, 2019, **43**, 6540-6548.
- 18. B. Sidhureddy, J. S. Dondapati and A. Chen, *Chemical communications*, 2019, **55**, 3626-3629.
- 19. Z. Li, X.-Y. Yu and U. Paik, *Journal of Power Sources*, 2016, **310**, 41-46.
- 20. S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei and G. Wang, *ACS applied materials & interfaces*, 2015, **7**, 3306-3313.
- 21. Z. Wang, S. Peng, Y. Hu, L. Li, T. Yan, G. Yang, D. Ji, M. Srinivasan, Z. Pan and S. Ramakrishna, *Journal of Materials Chemistry A*, 2017, **5**, 4949-4961.
- 22. M. P. Araújo, M. Nunes, I. M. Rocha, M. Pereira and C. Freire, *ChemistrySelect*, 2018, **3**, 10064-10076.
- 23. K. J. Lee, D. Y. Shin, A. Byeon, A. Lim, Y. S. Jo, A. Begley, D.-H. Lim, Y.-E. Sung, H. S. Park and K. H. Chae, *Nanoscale*, 2017, **9**, 15846-15855.
- 24. T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira and A. Manthiram, *Nature communications*, 2014, **5**, 1-8.