Supplementary Material

Nanoporous Carbon Doped Ceria Bismuth Oxide Solid Solution for Photocatalytic Water Splitting

Kahkashan Ansari^a, Saurabh Dalela^b, Sudhish Kumar^c and Neelu Chouhan^{a*}

^a Department of Pure and Applied Chemistry, University of Kota, MBS Road, Kota-324005 (India)

^b Department of Pure and Applied Physics, University of Kota, MBS Road, Kota-324005 (India)

^c Department of Physics, Mohanlal Sukhadia University, Udaipur-323002 (India)

*Corresponding author : Phone: 91-0744-2471742 and Fax : +91-744-2472960 e-mail:

neeluchouhan@uok.ac.in

Figure S1. Solid solutions CBO, synthesized at varying temperatures i. e. 300, 400, 500,600, 700, 800 and 900°C with (a) and (b) physical appearance (c) and (d) their XRD patterns observed at different 2θ angles with raising temperature.

SEM IMAGES

(i). Pure compound CBO

(ii). 2% C doped-CBO

(iii). 4% C doped-CBO

(iv). 6% C doped -CBO

(v). 8% C doped -CBO

(vi). 10% C doped -CBO

Figure S2 SEM images and corresponding EDX elemental mapping with percentage composition of the compounds, as depicted by the EDX profile of the pure CBO and 2%, 4%, 6%, 8% and 10%- carbon doped CBO samples.

I: Pure CBO

II: 2% C-doped CBO

III: 4% C-doped CBO

IV: 6% C-doped CBO

IV: 8% C-doped CBO

V :10% C-doped CBO

Figure S3. HRTEM images and corresponding SAED patterns of the pure CBO and C-doped CBO solid solutions.

Figure S4 Rietveld refinement-based visual fit to X-ray diffraction data of the (a) pristine CBO and (b) 2%C-, (c) 4%C-, (d) 6%C- (e) 8%C- and (f)10%C-doped CBO solid solution using standard card (JCPDS file No. 34–0394 of CeO₂). The observed calculated profiles are shown by open circle solid line curves. The short vertical marks represent the Bragg diffractions. The lower curve (blue lines) is the difference plot. (a', b', c', d', e' and f') are reciprocal lattice bravicis and (a'', b'', c'', d'', e'' and f'') are atomic arrangement in unit cell with blue, green, yellow, red, crayan, and purple circle represents the elements :Bi, Ce, C, O, O and O, respectively.

Table S1. Lattice parameters observed from Rietveld refined XRD patterns along the cubic FCC structure with cell parameter a, unit cell volume and z=4 coupled with refinement fitting parameters (R_{Bragg}, χ^2) experimental chemical composition (observed from EDX) and stiochiometric compositions of the studied solid solutions.

SI. No.	Sample	Lattice Parameter a (Å)	Unit Cell Volume V(Å ³)	M _w	R _{Bragg}	χ ²	Porosity (1- ρ _b /ρx)× 100 %	Experimental Composition Ce _{0.49} Bi _{0.38} O	Stiochiometric Composition CeBi ₂ O ₅
		a (11)	(11)				100 /0		
1.	Pure	5.4486(21)	161.75(11)	233.24	4.11	1.17	24.60	Ce _{0.49} Bi _{0.38} O	CeBi ₂ O ₅
	CBO								
2.	2%С-	5.4143(09)	158.72(5)	209.23	9.62	1.60	17.48	$C_{0.21}$ - $Ce_{0.94}Bi_{0.28}O$	C _{0.02} CeBi ₂ O _{4.98}
	CBO								
3.	4%C-	5.4140(05)	158.69(3)	223.45	6.95	1.49	22.78	$C_{0.23}$ - $Ce_{0.98}Bi_{0.32}O$	C _{0.04} CeBi ₂ O _{4.96}
	CBO								
4.	6%C-	5.4131(05)	158.62(2)	925.63	8.18	1.69	81.37	$C_{0.95}$ -Ce _{4.99} Bi _{0.94} O	C _{0.06} CeBi ₂ O _{4.94}
	CBO							~ ~ ~ ~ ~	~ ~
5.	8%C-	5.4093(10)	1.58.28(5)	214.81	9.57	1.73	19.89	$C_{0.77}$ - $Ce_{1.05}$ $Bi_{0.10}O$	$C_{0.08}$ CeBi ₂ O _{4.92}
	CBO	5 4051 (10)	150.00(0)	001.00	0.01	1 00			
6.	10%C-	5.4071(12)	158.09(6)	201.82	9.21	1.80	15.15	$C_{1.47}$ - $Ce_{1.07}$ B1 _{0.04} O	$C_{0.10}$ CeB ₁₂ O _{4.90}
	CRO								

(c)

- Figure S5. UV Vis spectra deconvulated into four peaks around the wavelengths (i)200-224 nm, (ii)259 nm, (iii)318 nm and (iv)342-413 nm of the solid solution (CBO)- loaded with different amount of carbon i. e. (a) 0% C, (b) 2% C, (c) 4% C, (d) 6% C, (e) 8% C, and (f) 10% C.
- Table S2 Deconvulated UV-Vis spectral bands, belongs to the Ce³⁺ ion at 200-224 nm, interface between ceria and bismuth oxide (*charge transfer band*) around 259 nm, Ce⁴⁺ ion 318 -342 nm and Bi³⁺ ion at 425-449 nm along with the calculated direct and indirect band gap of the C-doped and pure solid solutions.

SI. No.	Compound	direct Band	Indirect Band	Ce ³⁺	Charge transfer	Ce ⁴⁺	Bi ³⁺
		gap (eV)	gap(eV)	band	band	band	band
1.	Pure CBO	2.56	2.00	200.00		294.91	366.01
2.	2% C-CBO	2.72	2.52	211.86	259.32	318.64	389.83
3.	4% C-CBO	2.59	1.97	200.00	235.55	306.78	437.29
4.	6% C-CBO	2.69	2.42	200.00	259.32	271.19	330.50
5.	8% C-CBO	2.79	2.50	211.86	259.32	318.64	413.56
6.	10% C-CBO	2.74	2.51	211.86	247.48		342.37

Note: NM, means Peak found but maxima not visible in the measurable range.

Figure S6. XPS survey-scan of the Pristine and Carbon doped CBO solid solution.

Table S3. Atomic compositions (at.%) with their respective XPS core level binding energies (eV) along the Ce $3d_{3/2}$ and Ce $3d_{5/2}$ photoelectron peaks collected for the for Pure CBO and carbon doped CBO (x = 2%, 4%, 6%, 8% and 10 %) solid solutions and stiochiometric ratio $x = [O]/[Ce] = 3/2 \{Ce^{3+}\}+2 \{Ce^{2+}\}$ of the oxygen with respect to the cerium (Ce³⁺ and Ce⁺⁴).

Samp le	$\mathbf{p} \mathbf{Ce} \; \mathbf{3d}_{5/2} \; [\; \mathbf{eV}]$					Ce <i>3d</i> _{3/2} [eV]						Ce ⁴⁺	Ce ³⁺ /	$x = [\Omega]/$	Ov
IC .	v_{θ} Ce ³⁺	v Ce ⁴⁺	v' Ce ³⁺	v" Ce ⁴⁺	v''' Ce ⁴⁺	u_{θ} Ce ³⁺	<i>u</i> Ce ⁴⁺	<i>u'</i> Ce ³⁺	<i>u''</i> Ce ⁴⁺	<i>u'''</i> Ce ⁴⁺	/0	/0	ee	[O], [Ce]	

Pure CeO ₂	881.9	883.04	884.61	888.47	897.97	898.02	900.54	901.07	907.79	916.47	19.33	80.67	0.24	0.50	1.50
2%C CBO	880.9	883.60	885.40	889.89	896.18	899.77	901.57	904.26	908.75	917.74	51.48	48.52	1.06	0.58	1.42
4%C CBO	882.1	883.90	888.45	889.35	898.34	900.13	901.93	906.42	908.22	917.2	11.37	88.63	0.13	0.75	1.25
6%C CBO	881.1	882.96	884.76	888.35	898.23	898.36	900.93	903.62	907.21	917.1	22.27	77.73	0.29	1.20	0.80
8%C CBO	881.2	882.19	884.88	888.48	896.56	898.36	901.05	902.85	907.34	916.33	34.84	65.16	0.53	0.54	1.46
10%C CBO	879.3	882.06	884.75	887.45	894.64	898.23	900.92	902.72	905.42	915.3	40.92	59.08	0.69	0.65	1.35

Figure S7. Deconvolution of XPS core level spectra of Bi 4f with increase in carbon content in solid solution the Bi/O ratio. The each of the Bi $4f_{7/2}$ and Bi $4f_{5/2}$ peaks further divided in doublets represents Bi³⁺ ions and Bi metal contribution in solid solutions.

Figure S8. C 1s core level XPS spectra for CBO solid solutions.

Figure S9. O₂ production during the overall water splitting of pure water under real Sun exposure for 3h at ambient conditions. Conditions: 300mg photocatalyst in 120mL DIW.

Figure S10. Spectral image of light spectra of the 300 W Xe lamp used for the H_2 production study, as provided by the vendor.

Table S4. State of art porous systems used for hydrogen generation via water splitting with their respective amount, sacrificial agent used, co-catalyst, light source, H₂ production, O₂ production, reference number, and year of publication.

SI No.	Sample	Amount	Sacrifici- al agent	Co- catalyst	Toxicity	Light source	H ₂ production	O ₂ productio n	Ref.	Year
1.	Pt-Zn ₃ P ₂ - CoP (MOF)	100mg in 100mL	10% CH₃OH	5% Pt	toxic (Zn_3P_2) and CoP is Acute toxic)	Xe lamp (300 W)	9.15 mmol h^{-1} g ⁻¹		1	2017
2.	P-doped Zn_xCd_{1-x} S solid solutions	1mg in 5 mL pure water	Nil	Nil		White LED light sources (30 × 3 W)	419 μmol h ⁻¹ g ⁻¹		2	2018
3.	$\begin{array}{c} Ce_{0.3}Zr_{0.7} \\ O_{1.88}N_{0.12} \\ solid \\ solution \end{array}$	50mg in 50 mL	$\begin{array}{llllllllllllllllllllllllllllllllllll$	RuO2/C ZON and Pt/WO3		300-W xenon	19 μ mol and 101.7 μ mol under visible light ($\lambda > 420$ nm) and UV-vis light ($\lambda > 300$ nm) irradiation		3	2018
4.	AgTaO ₃ - SrTiO ₃ solid solutions	100mg in 100mL	Na ₂ SO ₃ (0.05 M) hole scavenger /silver nitrate (0.05 M) e- scavenger	Pt		full range illuminatio n ($\lambda \ge 250$ nm) visible light illuminatio n ($\lambda \ge 400$ nm).	~215.2 μ mol/h ($\lambda \ge 250$ nm) and ~ 5.8 μ mol/h ($\lambda \ge 400$ nm) illumination,		4	2019

5.	3D g-	50 mg in	Nil	1 wt% Pt	nontoxic	300 W Xe	101.4 µmol h ⁻¹	49.1 µmol	5	2019
	C ₃ N ₄	100 mL		and 3		lamp with	g^{-1}	$g^{-1} h^{-1}$		
	Nanoshe			wt% IrO ₂		a cutoff	-	-		
	ets			as co-		filter ($\lambda \geq$				
				catalysts		420 nm.				
6	CdS/C ₂ N		_	Pt	CdS is	visible	13.1 mmol h^{-1}	-	6	2017
0.	(10%)			11	toxic	light	σ^{-1}		Ū	2017
	CCN				tome	irradiation	8			
	een)					$(\lambda > 400)$				
						(<i>n</i> _ 100				
7	Pt/porous	1 mg in	_	0 95%Pt		Ha lamp	9.8 ± 0.6 µmol	_		
7.	$h_{\rm TiO}$	20mI	_	0.757011		irradiation	$y_{.0} \pm 0.0 \mu mor$	-		
	nanoflute	deionize				$(\lambda > 300 \text{ n})$	ing n			
	nanonute	d water				$(\kappa \leq 500 \text{ M})$				
		(Λr)				III, 500 W,			7	2020
		(AI)		0 05%Dt			7.2 and		/	
		20mI	-	0.93/01 t			7.2 and $2.6 \text{ um} \text{ all m} \text{ m}^{-1}$			
		See					5.0 µmor mg			
		Sea					Π^{-1} under $\bigcup V \propto$			
		water					natural sunnght,			
0	CdS/Mo	10 mg in	0.25 M	20/ Dt	CdS in	200 W Vo	4540 umol h ⁻¹		0	2017
0.	CuS/WO	10 mg m	0.55 M	270Pt	CuS Is	SUU W AC	$4340 \mu mor m^{-1}$	-	0	2017
	$S_2(0.39)$	100 mL	Na_2S and 0.25 M		toxic	arc lamp	g			
	W1%) /Ma		0.25 M			with UV				
	/10/		$Na_2 SO_3$.			cuton inter				
	sneets									
0	nybria	20	N1:1	N		250 W V.	150 22		0	2016
9.	S1/Mg11	20 mg in	NII	No co-		350 W Xe	$159.33 \ \mu mol \ h^{-1}$	-	9	2016
	O_3 hetero	100 mL		coatalyst		arc lamp.	g ⁻¹			
	structure									
10	S C C/Z C	50 ·	0.25	N 7	G 10 ·	200 111 11	41.47 1.1-1		10	2011
10.	CuS/ZnS	50 mg in	0.35 M	No co-	CdS 1s	300 W Xe	4147 μ mol h ⁻¹	-	10	2011
		100mL	Na ₂ S &	coatalyst	toxic	arc lamp	g ⁻¹			
			0.25 M			with 400	$(2 \mod \% \text{CuS})$			
			Na_2SO_3			nm cut-off				
	D 1 0 0 10				a.a	filter				• • • • •
11.	Pd@CdS	10 mg in	0.1 M	Pd	CdS and	300 W Xe	144.8 mmol	-	11	2018
	/PdS	50 mL	$Na_2S \& 0.1$		PbS are	arc lamp	$h^{-1} g^{-1}$			
			$M Na_2 SO_3$		toxic	with 420				
						nm cut-off				
						filter				
					Nontoxic	300 W Xe	201.5 µmol	-	12	2018
	12. Z	30 mg in	10 vol%	ZIF-67-		arc lamp	$g^{-1} h^{-1}$			
	IF-67-	50 mL	triethanola	derived		with 420				
	derived		mine	CoP		nm cut-off				
	CoP		(TEOA)	particle		filter				
	particle/ g-		aqueous							
	C3N4		solution							
13.	C-doped	300 mg	20%	0.5%Pt	Nontoxic	300 W Xe	5413.1 µmol	-	This	2021
	CeO ₂ :Bi ₂	in 120	CH ₃ OH			arc lamp	g-1h-1		work	
	O_3	mL	(pH=7)			with 420				
	solid					nm cut-off				
	solution					filter				
14.	C-doped	300 mg	Pure water	0.5%Pt	Nontoxic	Real	$323.0 \ \mu mol \ H_2$	161.5	This	2021
	CeO ₂ :Bi ₂	in 120				sunlight	h-1 g-1	µmol O ₂ h ⁻	work	

O ₃	mL	¹ g ⁻¹
solid		
solution		

References

- M. Lan, R. M. Guo, Y. Dou, J. Zhou, A. Zhou, J. R. Li, Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation, Nano Energy 33 (2017) 238-246. [DOI: <u>https://doi.org/10.1016/j.nanoen.2017.01.046</u>]
- H. F. Ye, R. Shi, X. Yang, W. F. Fu, Y. Chen, P-doped Zn_xCd_{1- x}S solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural, Appl. Catal. B 233 (2018) 70-79. (DOI https://doi.org/10.1016/j.apcatb.2018.03.060)
- Y. L. Wang, J. M. Jin, Y. H. Li, X. L. Wang, B. Zhang, X. Gong, H. F. Wang, A.P. Chen, L. R. Zheng, P. Hu, H.G. Yang, Ce_{0.3}Zr_{0.7}O_{1.88}N_{0.12} solid solution as a stable photocatalyst for visible light driven water splitting, Appl. Catal. B 224 (2018) 733-739. (DOI: https://doi.org/10.1016/j.apcatb.2017.11.012)
- J. Yu, L. Zhang, J. Qian, Z. Zhu, S. Ni, G. Liu, X. Xu, In situ exsolution of silver nanoparticles on AgTaO₃-SrTiO₃ solid solutions as efficient plasmonic photocatalysts for water splitting, Appl. Catal. B 256 (2019) 117818. (DOI: https://doi.org/<u>10.1016/j.apcatb.2019.117818</u>)
- X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Three-dimensional porous g-C₃N₄ for highly efficient photocatalytic overall water splitting, Nano Energy 59 (2019) 644-650.
 [DOI: https://doi.org/10.1016/j.nanoen.2019.03.010]
- J. He, L. Chen, Z. Q. Yi, D. Ding, C. T. Au, S. F. Yin, Fabrication of two-dimensional porous CdS nanoplates decorated with C₃N₄ nanosheets for highly efficient photocatalytic hydrogen production from water splitting, Catal. Commun. 99 (2017) 79-82. [DOI: https://doi.org/10.1016/j.catcom.2017.05.029]

- S. Cao, T. S. Chan, Y. R. Lu, X. Shi, B. Fu, Z. Wu, H. Li, K. Liu, S. Alzuabi, P. Cheng, M. Liu, T. Li, X. Chen, L. Piao, Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO₂ nanoflutes, Nano Energy 67 (2020) 104287. [DOI: https://doi.org/10.1016/j.nanoen.2019.104287]
- L. Zhao, J. Jia, Z. Yang, J. Yu, A. Wang, Y. Sang, W. Zhou, H. Liu, One-step synthesis of CdS nanoparticles/MoS₂ nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H₂ evolution. Appl. Catal. B 210 (2017) 290-296. [DOI: https://doi.org/10.1016/j.apcatb.2017.04.003]
- W. Zhu, D. Han, L. Niu, T. Wu, H. Guan, Z-scheme Si/MgTiO₃ porous heterostructures: Noble metal and sacrificial agent free photocatalytic hydrogen evolution, Int. J. Hydrog. Energy 41(33) (2016) 14713-14720. [DOI: https://doi.org/10.1016/j.ijhydene.2016.06.118]
- J. Zhang, J. Yu, Y. Zhang, Q. Li, J. R. Gong, Visible light photocatalytic H₂-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer, Nano Letters 11(11) (2011) 4774-4779. [DOI: https://doi.org/10.1021/nl202587b]
- Q. Sun, N. Wang, J. Yu, J. C. Yu, A hollow porous CdS photocatalyst, Adv. Mater. 30(45) (2018) 1804368. [DOI: https://doi.org/10.1002/adma.201804368]
- 12. X. J. Sun, D.D. Yang, H. Dong, X.B. Meng, J. L. Sheng, X. Zhang, J. Z. Wei, F. M. Zhang, ZIF-derived CoP as a cocatalyst for enhanced photocatalytic H₂ production activity of g C₃N₄, Sustainable Energy & Fuels 2(6) (2018) 1356-1361. [DOI: https://doi.org/10.1039/C8SE00063H]