Supporting Information

Demonstration of green hydrogen production using solar energy at 28% efficiency and evaluation of its economic viability

M.A. Khan⁺, I. Al-Shankiti, A. Ziani and H. Idriss⁺

Hydrogen Platform, SABIC-CRD, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

+Electronic mail: mohd.khan1@ucalgary.ca; IdrissH@SABIC.com

Additional details of the TEA for making hydrogen (50 tons/ day) from water using CPV-E for 9.1 hours per day and direct electrolysis (from the grid) for 14.9 hours per day.

Capital and Working Parameters

(

plant lifetime (years)	20
H ₂ Production (ton/day)	50
Sunshine (hours/day)	9.1
Night hours (hours/day)	14.9
H ₂ Production Rate during day (ton/h)	2.08
H ₂ produced by PV (ton/day)	18.96
H ₂ produced by electricity (ton/day)	31.04
Annual Working Days (days/yr)	333
H ₂ Production Rate from PV (ton/year)	6313.7
Total H ₂ Production Rate (ton/year)	16150

PV Energy & land

PV lifetime (years)	20
Land factor	4
Power needed for Solar Farm (kW)	97,202.38
Energy produced by solar farm (kWh)	884,541.67
Solar Irradiation in Tabuk KSA (kWh/m ²)	7.37
PV module efficiency	41.00%
Power produced by PV module (kWh/m ²)	3.022
Area needed by PV modules (m ²)	2.93E+05
Total area required (m ²) including land factor	1.17E+06
module and tracker lifetime (years)	25.00
Module and tracker cost (\$/W)	\$ 0.720
Labor, Design, and installation (\$/W)	\$0.43
PV inverter (\$/W)	\$0.08
Total Module and tracker cost (\$)	\$69,985,714.29
Total cost of Labor, design, permitting and installation	\$41,991,428.57
PV inverter cost (\$)	\$7,776,190.48
PV Farm turnkey Capital	\$119,753,333.33
PV O&M cost (USD/kWh)	0.008
PV annual Opex	\$7,076.33

Reference Operating current density (A/cm ²)	0.40
Reference Operating voltage (V)	1.70
Actual operating current density	0.40
Pressure of H ₂ (bar) before compression	10
electrical usage per kg of H ₂ (KWh _{elec} /kg(H ₂)) -LHV	32.66
Electrolysis efficiency (electrical efficiency) (1.23/1.7)	0.70
Fixed O&M (%) - of total uninstalled CAPEX	3.00%
Electrolyser replacement cost (% of uninstalled capes)	15.00%
Stack Cost of reference electrolyzer (USD/kW)	\$272.00
Balance of plant capital cost includes power electronics (USD/kW)	\$272.00
Electrolyzer installation factor	12.0%
Reference Stack cost (\$/m ²)	1849.60
H_2 production (mol/day)	2.50E+07
electrons to make 1 H ₂ molecule	2.00
electrons to make 1 mole of H_2	1.20E+24
total electrons needed per day (electrons/day)	3.01E+31
total charge (C /day)	4.82E+12
Amps (C / second)	5.58E+07
Area of electrolyzer (cm ²)	1.39E+08
Area of electrolyser (m ²)	13942.13
stack cost of electrolyser based on m ² (USD)	\$25,787,362.96
BOP cost (USD)	\$25,787,362.96
installation cost of electrolyser (USD)	\$6,188,967.11
Capex of electrolyzer stack, BOS & installation (USD)	\$57,763,693.04
Yearly Opex of electrolyzer (\$/year)	\$1,547,241.78
Yearly electricity cost of (\$/year)	\$9,645,781.07
Electrode replacement time (years)	7.00
number of times electrodes will be replaced in plant lifetime	2.00
Electrolyzer replacement factor	1.5%
annual electrolyzer replacement cost (USD/yr)	\$866,455.40
Electrolyzer annual Opex (USD/yr)	\$2,413,697.17
	., ,

Water pump, Compressor gas processing (to 20 bar)

Duty(kW)	51.94
Capex of pump	\$29,306.58
Opex (USD/yr) of pump	\$8,302.09
Duty (kW)	984.68
Opex (USD/hr)	\$19.69
Capex (USD)	\$4,143,572.97
Opex (USD/yr)	\$157,391.09

Production using electricity

H ₂ Production Rate (ton/h)	2.08
working hours/day	14.9
Power needed from grid (kW)	97202.38
Energy provided by grid (kWh)	1,448,315.48
Total system electrical usage at night for a year (kWh)	4.82E+08

Factors

KSA Location Markup Factor (1.0 for USA)	1.00
Land cost (USD/km ²)	\$123,497.00
H_2 loss due to separation	3.0%

Operation Parameters

DI Water amount (ton/tonH ₂)	10
DI Water price (USD/ton)	1.3
Annual water consumption (ton/yr)	166,500.00
Annual water cost (USD/yr)	\$216,450.00
Required electricity for utilities (kWh/tonH ₂)	161.00
Annual electricity requirement for utilities (kWh/yr)	2,680,650.00
Electricity price (USD/kWh)	0.02
Annual electricity cost (USD/yr)	\$53,613.00
Number Plant Staff	10
Staff salary cost (USD/h)	20.00
Annual cost of plant staff (USD/yr)	\$1,598,400.00

Revenue

Levelized H ₂ Price (USD/ton)	\$2,555
Annual H ₂ revenue (USD/yr)	\$41,257,830.32
Oxygen Credit (USD/ton O ₂)	\$40.00
Oxygen Credit (USD/ton H ₂)	\$320.00
Annual Oxygen Credit (USD)	\$5,168,160.00
CO_2 Credit (USD/ton CO_2)	
based on stoichiometric ratio of the SMR reaction	
$(CH_4 + 2H_2O \rightarrow 4H_2 + CO_2) - excluding process energy.$	\$50.00
CO ₂ Credit (USD/ton H ₂)	\$275.00
Annual CO ₂ Credit (USD)	\$4,441,387.50

Total Capex

PV Farm turnkey Capital	\$119,753,333.33
Capex of electrolyzer stack, BOS & installation (USD)	\$57,763,693.04
Compressor & gas processing (USD)	\$4,143,572.97
Water pump	\$29,306.58
Fixed Capital Cost (USD)	\$181,689,905.92
Contingency	20.0%
Total Fixed Capital Cost in KSA + plus contingency (USD)	\$218,027,887.10
Land Cost (USD)	\$146,326.82
Working capital - (Installation Cost of whole plant) (USD)	\$48,180,395.68

Annual Opex

Annual PV Maintenance (USD/yr)	\$7,076.33
O&M of electrolyzer (USD/yr)	\$2,413,697.17
Electricity cost to run electrolyzer + utilities (\$/year)	\$9,699,394.07
Compressor	\$157,391.09
Water pump	\$8,302.09
Annual water cost (USD/yr)	\$216,450.00
Annual staff cost (USD/yr)	\$ 1,598,400.00
Total Annual Variable Cost (USD/yr) (OPEX)	\$14,100,710.76
Revenue	

\$41,257,830.32
\$9,609,547.50
\$ 50,867,377.82

Internal Rate of Return: IRR 12.0	%
-----------------------------------	---

50 tons H_2/day	CPV (9.1 hour	CPV + grid (24	CPV + grid (24
·	operation)	hour operation)	hour operation)
		Electricity at	Electricity at
		0.05 \$/kWh	0.02 \$/kWh
Energy provided and power needed			
Power needed for the solar farm (kW)	256,357.93	97,202.38	97,202.38
Energy provided by the solar farm (kWh)	2,332,857.14	884,541.67	884,541.67
Energy provided by grid (kWh)	0	1,448,315.48	1,448,315.48
Capex			
Total solar farm cost (\$)	\$315,832,967.03	\$119,753,333.33	\$119,753,333.33
Total electrolysers capital (\$)	\$156,193,758.24	\$57,763,693.04	\$57,763,693.04
Opex			
Annual PV Maintenance (\$/yr)	\$18,662.86	\$7,076.33	\$7,076.33
Annual electricity cost (\$/yr)	\$134,032.50	\$24,248,485.18	\$9,699,394.07
Levelized H ₂ Price (\$/ton)	\$5,900	\$3,471	\$2,555

Effect of operation time and electricity cost on the Levelized Cost of Hydrogen from water.

At 0.05 \$/kWh the LCH is found to be \$3.47 the kg (a drop of \$2.5 per kg when compared to a 9.1 hours/day operation). The effect of electricity, while important, seems to affect less the cost in the investigated range, a drop of \$0.9 per kg_{H2} (ca. 25%) when the electricity dropped 2.5 times (from \$0.05 to \$0.02 the kWh; a 250% drop).

Figure S1. Part of the solar spectrum absorbed in a triple junction solar cell (A) and a schematic representation of a typical triple-junction solar cell (B) (adapted from ref. 1)

Figure S2. External quantum efficiency (EQE) of a GaInP/GaInAs/Ge AzurSpace solar cell (adapted from ref. 2).

References

1) Fernández, Eduardo F., Antonio J. García-Loureiro, and Greg P. Smestad. "Multijunction concentrator solar cells: analysis and fundamentals." High Concentrator Photovoltaics. Springer, Cham, 2015. 9-37.

2) http://www.azurspace.com/images/products/0004357-00-01_3C44_AzurDesign_3x3.pdf