Enhancing thermoelectric performance of band structure engineered GeSe_{1-x}Te_x alloys

D. Sidharth¹, A.S. Alagar Nedunchezhian¹, R. Akilan², Anup Srivastava³, Bhuvanesh Srinivasan⁴, P. Immanuel ⁵, R. Rajkumar⁶, N. Yalini Devi¹, M. Arivanandhan ^{1*}, Chia-Jyi-Liu⁵, G. Anbalagan ⁶, R. Shankar ², R. Jayavel ¹

¹Centre for Nanoscience and Technology, Anna University, Chennai-600025, India. ²Department of Physics, Bharathiyar University, Coimbatore-641046, India.

³Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Allahabad-211012, India.

⁴ CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and

Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba-3050044, Japan.

⁵Department of Physics, National Changhua University of Education, Changhua-500, Taiwan.

⁶Department of Nuclear Physics, University of Madras, Chennai-600025, India.

Supplementary material

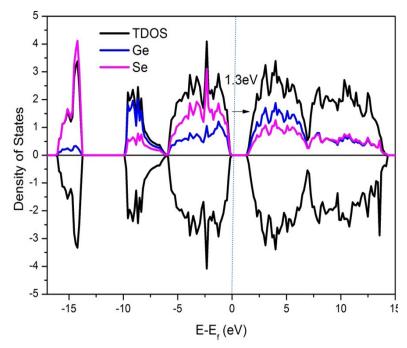


Figure S1 Total and Partial Density of states of GeSe calculated using HSE06 level of theory