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Fig. S1. The physical images of Mn-MCM being prepared.

The preparation of Mn-MCM is very simple and can be obtained in two steps, that is, 

growing copper hydroxide (Cu(OH)2) nanowires on a copper mesh, and in the second 

step, growing Mn-dobdc on the Cu(OH)2 nanowires by hydrothermally reaction, and 

finally obtaining the Mn-MCM.
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Fig. S2. TEM images of Mn-MCM. (a) Top-view and side-view TEM images of Mn-
MCM with hexagonal prism structure at different magnifications. (b) TEM images of 
Mn-MCM with hexagonal prism cluster structure under different magnifications.
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Fig. S3. The surface temperatures variation of Mn-MCM with time.
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Fig. S4. The physical images before and after 8 h of the evaporation experiment of 
Mn-MCM.

Fig. S5. The concentrations change of Cu element and Mn element in the solution 
(brine) before and after the evaporation experiment.
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Fig. S6. The physical images of Mn-MCM before and after bending.

Fig. S7. The physical image of the experimental data acquisition instrument in the 
outdoor experiment.
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Fig. S8. The fresh water collection device based on Mn-MCM under natural light.

Fig. S9. The infrared images of the surface temperature of Mn-MCM with time under 

natural light.
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Fig. S10. Infrared camera images of the outdoor fresh water collection device under 

different time (Top view).

Section S1. Steady-state energy balance analysis:

The input heat flux (Jin) is 1 kW/m2, and five main strategies for energy 

consumption are as follows: (1) water evaporation, (2) reflection and transmission 

energy loss, (3) conductive heat loss from the Mn-MCM to the water, (4) radiation 

heat loss from the Mn-MCM to the environment, and (5) convection heat loss from 

the Mn-MCM to the environment.
(1) Water evaporation consumption θ1

The water evaporation consumption rate is equal to the evaporation efficiency; thus, 

θ1 is about 81.5%

(2) Refection loss and transmission loss θ2

Detected by UV spectrophotometer, the reflectance and transmittance of Mn-MCM 

are 12.51% and 1.15%; thus, the refection loss, θ2 is 13.66%.

(3) Conduction loss θ3

θ3 = (Jcond / Jin ) • (Aevaporator / Asystem)

The conductive heat flux from evaporator composed of Mn-MCM and polyvinyl 

chloride foam to water is calculated as Jcond = k∙(ΔT/L) (Fourier’s law), k is the 

thermal conductivity of the evaporator (0.05 W m-1K-1), and ΔT/L is the gradient of 
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temperature of Mn-MCM as measured by IR camera and thermocouple which is about 

160 K/m. The picture (Fig. S11) illustrates the Mn-MCM surface area is major 

conductive path and the system area is absorbing the input solar energy. After several 

statistical calculations, Aevaporator /Asystem is about 0.77. Thus, we can calculate that θ3 is 

about 0.6%.

Fig. S11. The picture of evaporation system mode and fitting area for energy balance 
calculation.

(4) Radiation loss θ4

θ4 = (Jrad / Jin ) ∙ (Aevaporator / Asystem)

The radiation flux can be calculated by Jrad = ε σ (T1
4-T2

4) (Stefan-Boltzmann law), ε 

is the emissive rate which is calculated using an absorption spectrum and plank 

formula as 0.71, σ is the Stefan-Boltzmann constant (5.67×10-8 W m-2 K-4), T1 is the 

temperature of the absorber (the average surface temperature of Mn-MCM is about 

309.75 K at 1 kw m-2), T2 is the ambient temperature (298.15 K). Thus, we can 

calculate that θ4 is about 4.04%.
(5)  Convection loss θ5

θ5 = (Pconv / Jin ) ∙ (Aevaporator / Asystem)

The convection heat loss can be calculated by Pconv= h Asurface ΔT (Newton’s law of 

cooling), h is the convection heat transfer coefficient which can obtain by reference 

(5W m-2 K-1) [1], the Asurface is 0.00138474 m2, the rest of the parameters remain the 

same as before. (ΔT= T1-T2 = 11.6 K). Thus, we can calculate that θ4 is about 0.

In addition to these five main energy consumption parts (81.5% + 13.66% + 0.6% + 

4.04% + 0%≈99.76%), the incoming solar energy may be dissipated by the test 

system or other ways.
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Table S1 The evaporation performance of Mn-MCM was compared with other 

materials.

Materials

Evaporation 

rate

(kg m-2 h-1)

Evaporation 

Efficiency (%)
References

Mn-MOF-based copper mesh (Mn-MCM) 1.31 @ 1 sun 81.5% @ 1 sun This paper

MDPC/SS mesh 1.222 @ 1 sun 84.3% @ 1 sun [2]

Washable nonwoven photothermal cloth 1.24 @ 1 sun 83.1% @ 1 sun [3]

2D Ti3C2 MXene membrane 1.31 @ 1 sun 71% @ 1 sun [4]

Layer-by-layer 3D-printed evaporator 1.25 @ 1 sun 85.6% @ 1 sun [5]

MoOx HNS membrane 1.255 @ 1 sun 85.6% @ 1 sun [6]

Polypyrrole coated cotton fabric 1.2 @ 1 sun 82.4% @ 1 sun [7]

All-nanofiber aerogel 1.11@ 1 sun 76.3%@ 1 sun [8]

Artificial tree with a reversed design 1.08@ 1 sun 74%@ 1 sun [9]

Fe3O4@C film 1.07 @ 1 sun 67% @ 1 sun [10]

CuS/PE membrane 1.021 @ 1 sun 63.9% @ 1 sun [11]

Mxene/polyvinylidene fluoride 1@ 1 sun 84%@ 1 sun [12]
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