Toward Strong Self-Healing Polyisoprene Elastomers with Dynamic Ionic Crosslinks

Yohei Miwa,^{1, †,*} Junosuke Kurachi,¹ Yusuke Sugino,¹ Taro Udagawa,¹ and Shoichi Kutsumizu¹

¹Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University,

Yanagido, Gifu 501-1193, Japan.

[†]PRESTO, Japan Science and Technology Agency.

*Author to whom correspondence should be addressed.

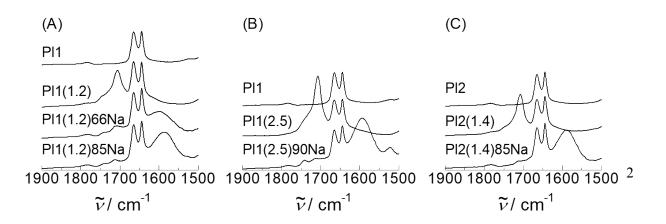

E-mail: y_miwa@gifu-u.ac.jp

Table of Contents

<Supplementary Figures>

Figure S1. FT-IR spectra for the indicated samples. The degree of neutralization of the samples was determined from reduction of band intensity of ν (C=O) of COOH group at 1707 cm⁻¹ and 1744 cm⁻¹ normalized by the band intensity of ν (C=C). By the neutralization, ν (O-C-O⁻) of sodium carboxylate was generated at 1590 cm⁻¹.

Figure S2. (A) The chemical structures for isoprene trimers containing a carboxy group and a sodium carboxylate group. These model trimers are used for the calculation. Dimer for each combination with lowest energy DFT calculation result for (B) -COOH \cdots HOOC-, (C) - COONa \cdots HOOC-, and (D) -COONa \cdots NaOOC- is presented.

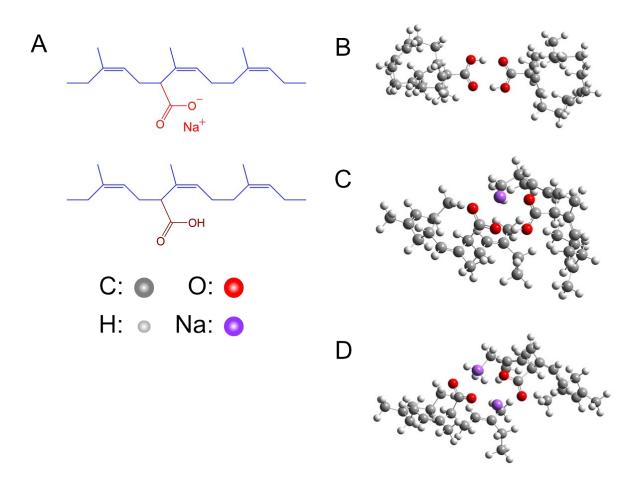


Figure S2. (A) The chemical structures for isoprene trimers containing a carboxy group and a sodium carboxylate group. These model trimers are used for the calculation. Dimer for each combination with lowest energy DFT calculation result for (B) -COOH···HOOC-, (C) -COONa···HOOC-, and (D) -COONa···NaOOC- is presented.