Supporting Information

Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidics via commercial 3D-printers

Pengju Yin,^a Lei Zhao,^a Zezhou Chen,^a Zhiqiang Jiao,^a Hongyan Shi,^a Bo Hu,^{*,a} Shifang Yuan,^{*,b} Jie Tian,^{*,a,c}

a School of Life Science and Technology, Library, Xidian University, Xi'an 710126, Shaanxi, People's Republic of China. Email: E-mail: bohu@xidian.edu.cn;

b Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. Email: jie.tian@ia.ac.cn;

c Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China. Email: shifangy@fmmu.edu.cn;

* Correspondence: bohu@xidian.edu.cn; shifangy@fmmu.edu.cn; jie.tian@ia.ac.cn

Fig. S1. Explanatory Chart of observation and capture images under particle focusing fluorescent experiment

Table S1. The technical details of Inkjet,	, SLA, DLP and FDM 3D printers.
--	---------------------------------

Print function	Inkjet	SLA	DLP	FDM	
3D-printer	Projet 3600HD	Form 1+	Miicraft +	Guiders	
Build size	298X185X203mm	125X125X165mm	43X27X180mm	280X250X300mm	
XY resolutions	25-50µm	155µm	56µm	100µm	
Z resolutions	16µm	25-200µm	30-100µm	100µm	
Print material	UV Curable Plastic	Photopolymer	Photopolymer, BV-003	ABS, PLA	
Print head	Multi-nozzle	Single laser	Surface forming	Single nozzle	
Print speed	Medium	Medium	Medium	High	
Print cost	High	Medium	Medium	Low	
Input Data File	STL, CTL, OBJ, PLY, ZPR, ZBD, AMF, WRL, 3DS, FBX, IGES, IGS, STEP, STP, MJPDDD	STL, OBJ	STL	3MF, STL, OBJ, FPP, BMP, PNG, JPG, JPEG	

Fig. S2. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 4.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S3. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 4.5 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S4. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 5.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S5. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 5.5 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S6. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 5.6 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S7. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 5.8 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S8. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 5.9 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S9. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 6.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S10. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 6.2 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S11. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 6.4 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S12. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 6.5 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S13. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 6.6 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S14. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 7.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S15. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 7.5 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S16. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 8.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S17. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 8.5 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S18. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 9.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S19. The simulation results of different velocities (48 μ L/min – 2832 μ L/min) in serpentine channel with the curvature of 10.0 mm. (a) 48 μ L/min (0.01 m/s), (b) 144 μ L/min (0.03 m/s), (c) 240 μ L/min (0.05 m/s), (d) 336 μ L/min (0.07 m/s), (e) 432 μ L/min (0.09 m/s), (f) 528 μ L/min (0.11 m/s), (g) 624 μ L/min (0.13 m/s), (h) 720 μ L/min (0.15 m/s), (i) 816 μ L/min (0.17 m/s), (j) 912 μ L/min (0.19 m/s), (k) 1008 μ L/min (0.21 m/s), (l) 1104 μ L/min (0.23 m/s), (m) 1296 μ L/min (0.27 m/s), (n) 1488 μ L/min (0.31 m/s), (o) 1680 μ L/min (0.35 m/s), (p) 1872 μ L/min (0.39 m/s), (q) 2064 μ L/min (0.43 m/s), (r) 2256 μ L/min (0.47 m/s), (s) 2448 μ L/min (0.51 m/s), (t) 2640 μ L/min (0.55 m/s), (u) 2832 μ L/min (0.59 m/s).

Fig. S20. Summarize the simulation results to six focusing status by dimensionless numbers (Re-De). (a) All simulation data in Fig. 4. The legend of (a) is the same as (b). (b) Partial enlarged detail in (a).

Fig. S21. Experimental results at the outlet of the microfluidic channels with 5.9 mm curvature radius by different flow throughput. Scale bar 200 μ m.

Fig. S22. the statistics of simulated and experiment data by NFI In the different fluid flow throughput (48 μ L/min – 1008 μ L/min) with 5.9 mm curvature radius.

Fig. S23. The heat maps of experiments data in different fluid flow throughput (48 μ L/min – 1008 μ L/min) with 5.9 mm curvature radius.

Fig. S24. Images and sizes of MCF-7 and 4T1 cancer cells. (a) Bright images (i), fluorescent images (ii) and the size distribution of MCF-7 cancer cells. (b) Bright images (i), fluorescent images (ii) and the size distribution of 4T1 cancer cells.

r (mm)								
Vel(m/s) 2	2mm	3mm	4mm	4.5mm	5mm	5.5mm	5.8mm	5.85mm
0.01 2	2. 98, 0. 77	2. 98, 0. 63	2.98,0.54	2.98,0.51	2. 98, 0. 49	2.98,0.46	2.98,0.45	2. 98, 0. 45
0.038	8. 95, 2. 31	8.95,1.89	8.95,1.63	8.95, 1.54	8.95, 1.46	8.95,1.39	8.95,1.36	8.95,1.35
0.051	4.92, 3.85	14. 92, 3. 15	14. 92, 2. 72	14. 92, 2. 57	14. 92, 2. 44	14. 92, 2. 32	14. 92, 2. 26	14. 92, 2. 25
0.07 2	0. 89, 5. 39	20. 89, 4. 4	20. 89, 3. 81	20. 89, 3. 6	20. 89, 3. 41	20. 89, 3. 25	20. 89, 3. 17	20.89,3.15
0.09 2	6. 86, 6. 93	26. 86, 5. 66	26. 86, 4. 9	26. 86, 4. 62	26. 86, 4. 39	26. 86, 4. 18	26. 86, 4. 07	26.86,4.05
0.12	9.84,7.71	29. 84, 6. 29	29. 84, 5. 45	29. 84, 5. 14	29. 84, 4. 87	29.84,4.65	29. 84, 4. 52	29. 84, 4. 51
0.11 3	2. 83, 8. 48	32. 83, 6. 92	32. 83, 5. 99	32. 83, 5. 65	32. 83, 5. 36	32.83,5.11	32. 83, 4. 98	32.83,4.96
0.13 3	8.79,10.02	38. 79, 8. 18	38. 79, 7. 08	38. 79, 6. 68	38. 79, 6. 34	38. 79, 6. 04	38. 79, 5. 88	38. 79, 5. 86
0.15 4	4. 76, 11. 56	44. 76, 9. 44	44. 76, 8. 17	44. 76, 7. 71	44. 76, 7. 31	44. 76, 6. 97	44. 76, 6. 79	44. 76, 6. 76
0.17 5	60. 73, 13. 1	50. 73, 10. 7	50. 73, 9. 26	50. 73, 8. 73	50. 73, 8. 28	50. 73, 7. 9	50. 73, 7. 69	50.73,7.66
0.19 5	6.7,14.64	56. 7, 11. 95	56.7,10.35	56. 7, 9. 76	56. 7, 9. 26	56. 7, 8. 83	56.7,8.6	56. 7, 8. 56
0.21 6	2. 67, 16. 18	62. 67, 13. 21	62.67,11.44	62.67,10.79	62.67,10.23	62.67,9.76	62.67,9.5	62.67,9.46
0.23 6	8. 64, 17. 72	68. 64, 14. 47	68. 64, 12. 53	68. 64, 11. 81	68.64,11.21	68.64,10.69	68.64,10.41	68.64,10.36
0.27 8	80. 57, 20. 8	80. 57, 16. 99	80. 57, 14. 71	80. 57, 13. 87	80. 57, 13. 16	80. 57, 12. 55	80. 57, 12. 22	80. 57, 12. 16
0.31 9	2. 51, 23. 89	92. 51, 19. 5	92. 51, 16. 89	92. 51, 15. 92	92. 51, 15. 11	92. 51, 14. 4	92. 51, 14. 03	92.51,13.97
0.351	04. 45, 26. 97	104. 45, 22. 02	104. 45, 19. 07	104. 45, 17. 98	104. 45, 17. 06	104. 45, 16. 26	104. 45, 15. 84	104.45,15.77
0.391	16. 38, 30. 05	116. 38, 24. 54	116. 38, 21. 25	116.38,20.03	116. 38, 19. 01	116. 38, 18. 12	116. 38, 17. 65	116.38,17.57
0. 43 1	28. 32, 33. 13	128.32,27.05	128. 32, 23. 43	128.32,22.09	128. 32, 20. 95	128. 32, 19. 98	128. 32, 19. 46	128. 32, 19. 37
0. 47 1	40. 26, 36. 21	140. 26, 29. 57	140. 26, 25. 61	140. 26, 24. 14	140. 26, 22. 9	140. 26, 21. 84	140.26,21.27	140. 26, 21. 17
0.511	52. 19, 39. 3	152. 19, 32. 09	152. 19, 27. 79	152. 19, 26. 2	152. 19, 24. 85	152. 19, 23. 7	152. 19, 23. 08	152. 19, 22. 98
0.551	64. 13, 42. 38	164. 13, 34. 6	164. 13, 29. 97	164. 13, 28. 25	164. 13, 26. 8	164. 13, 25. 56	164. 13, 24. 89	164. 13, 24. 78
0. 59 1	76.07,45.46	176.07,37.12	176.07,32.15	176.07,30.31	176.07,28.75	176.07,27.41	176.07,26.7	176.07,26.58

Table S2. The dimensionless number (Re, De) in different channel radius (2mm-5.85mm) and flow velocity (0.01m/s-0.59m/s).

Table S3. The dimensionless number (Re, De) in different channel radius (5.9mm-10mm) and flow velocity (0.01m/s-0.59m/s).

r (mm)								
Vel(m/s)	5.9mm	5.95mm	6mm	6.5mm	7mm	8mm	9mm	10mm
0.01	2.98,0.45	2.98,0.45	2.98,0.44	2.98,0.43	2.98,0.41	2.98,0.39	2.98,0.36	2.98,0.34
0.03	8.95,1.35	8.95, 1.34	8.95,1.33	8.95,1.28	8.95, 1.24	8.95,1.16	8.95,1.09	8.95, 1.03
0.05	14. 92, 2. 24	14. 92, 2. 23	14. 92, 2. 22	14. 92, 2. 14	14.92,2.06	14. 92, 1. 93	14. 92, 1. 82	14.92, 1.72
0.07	20. 89, 3. 14	20. 89, 3. 13	20. 89, 3. 11	20. 89, 2. 99	20. 89, 2. 88	20. 89, 2. 7	20. 89, 2. 54	20. 89, 2. 41
0.09	26. 86, 4. 04	26. 86, 4. 02	26. 86, 4	26. 86, 3. 85	26.86,3.71	26.86, 3.47	26. 86, 3. 27	26.86,3.1
0.1	29. 84, 4. 49	29. 84, 4. 47	29. 84, 4. 45	29. 84, 4. 27	29.84,4.12	29. 84, 3. 85	29. 84, 3. 63	29. 84, 3. 45
0.11	32. 83, 4. 93	32. 83, 4. 91	32. 83, 4. 89	32. 83, 4. 7	32. 83, 4. 53	32. 83, 4. 24	32. 83, 4	32. 83, 3. 79
0.13	38. 79, 5. 83	38. 79, 5. 81	38. 79, 5. 78	38. 79, 5. 56	38. 79, 5. 35	38. 79, 5. 01	38. 79, 4. 72	38. 79, 4. 48
0.15	44. 76, 6. 73	44. 76, 6. 7	44. 76, 6. 67	44. 76, 6. 41	44. 76, 6. 18	44. 76, 5. 78	44. 76, 5. 45	44.76,5.17
0.17	50. 73, 7. 63	50. 73, 7. 59	50. 73, 7. 56	50. 73, 7. 27	50. 73, 7	50. 73, 6. 55	50. 73, 6. 17	50. 73, 5. 86
0.19	56. 7, 8. 52	56.7,8.49	56. 7, 8. 45	56.7,8.12	56.7,7.83	56.7,7.32	56.7,6.9	56.7,6.55
0.21	62.67,9.42	62. 67, 9. 38	62. 67, 9. 34	62. 67, 8. 98	62.67,8.65	62.67,8.09	62. 67, 7. 63	62.67,7.24
0.23	68. 64, 10. 32	68. 64, 10. 27	68. 64, 10. 23	68. 64, 9. 83	68.64,9.47	68.64,8.86	68. 64, 8. 35	68.64,7.93
0.27	80. 57, 12. 11	80. 57, 12. 06	80. 57, 12. 01	80. 57, 11. 54	80. 57, 11. 12	80. 57, 10. 4	80. 57, 9. 81	80. 57, 9. 3
0.31	92. 51, 13. 91	92. 51, 13. 85	92. 51, 13. 79	92. 51, 13. 25	92.51,12.77	92.51,11.94	92.51,11.26	92.51,10.68
0.35	104. 45, 15. 7	104. 45, 15. 64	104. 45, 15. 57	104. 45, 14. 96	104. 45, 14. 42	104. 45, 13. 48	104. 45, 12. 71	104. 45, 12. 06
0.39	116. 38, 17. 5	116. 38, 17. 42	116. 38, 17. 35	116. 38, 16. 67	116. 38, 16. 06	116. 38, 15. 03	116. 38, 14. 17	116. 38, 13. 44
0.43	128. 32, 19. 29	128.32,19.21	128. 32, 19. 13	128. 32, 18. 38	128. 32, 17. 71	128. 32, 16. 57	128.32,15.62	128.32,14.82
0.47	140. 26, 21. 08	140. 26, 21	140. 26, 20. 91	140.26,20.09	140. 26, 19. 36	140. 26, 18. 11	140.26,17.07	140. 26, 16. 2
0.51	152. 19, 22. 88	152. 19, 22. 78	152. 19, 22. 69	152. 19, 21. 8	152. 19, 21	152. 19, 19. 65	152. 19, 18. 52	152. 19, 17. 57
0.55	164. 13, 24. 67	164. 13, 24. 57	164. 13, 24. 47	164. 13, 23. 51	164. 13, 22. 65	164. 13, 21. 19	164. 13, 19. 98	164. 13, 18. 95
0.59	176.07,26.47	176.07,26.36	176.07,26.25	176.07,25.22	176.07,24.3	176.07,22.73	176.07,21.43	176.07,20.33