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I. LATTICE PARAMETERS FOR MECS

For g ≥ 1, the soft shoulder profile of the HCSS parti-
cles is flat enough so that under compression, it is ener-
getically favourable for neighbouring shells to be either
fully overlapped or not overlapped. In this section, we
show how this interplay between the hard-core and soft-
shoulder length scales allows us to calculate the lattice
parameters for MECs for g ≥ 1 and r1/r0 <

√
3 using

simple geometry.

Low and high density hexagonal phases (HEXL,
HEXH)

The unit cell for HEXL is shown in Figure 8(a). The
lattice constants a, b = r1 so that the unit cell aspect
ratio γ = b/a = 1, the unit cell angle φ = π/3 and the
density parameter ` = r1, where we parameterise the area

FIG. 1: Unit cells for MECs of HCSS particles with g ≥ 1
and r1/r0 ≤

√
3.

per particle as
√
3
2 `

2. On the other hand, the unit cell for
HEXH is shown in Figure 8(d). The lattice constants
a, b = r0 so that γ = b/a = 1, φ = π/3 and ` = r0.

Chain phase (CH)

The unit cell is shown in Figure 8(b). The lattice con-
stants are a = r0, b = r1 so that γ = r1/r0. Since ABC
is an isosceles triangle, we have

cosφ =
r0
2r1
⇒ φ = cos−1

(
r0
2r1

)
. (1)

Using Eq. (1) and the fact that the unit cell area is given

by r0r1 sinφ =
√
3
2 `

2, the density parameter is given by

` =

(
2r0r1√

3

)1/2
[

1−
(
r0
2r1

)2
]1/4

. (2)

Rhomboid phase (RH)

The unit cell is shown in Figure 8(c). The lattice con-
stants are a, b = r0 so that γ = 1. Since ABC and ADC
are identical isosceles triangles, we have

cos

(
φ

2

)
=

r1
2r0
⇒ φ = 2 cos−1

(
r1
2r0

)
. (3)

Finally, using Eq. (3) and the fact that the unit cell area

is given by r0r1 sin
(
φ
2

)
=
√
3
2 `

2, we have

` =

(
2r0r1√

3

)1/2
[

1−
(
r1
2r0

)2
]1/4

. (4)
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Zig-zag 1 phase (ZZ1)

The unit cell is shown in Figure 8(e) and the angles θ1,
θ2 and θ3 are defined as follows. Since ABE and CDE
are isosceles triangles, we have

cos θ1 =
r1
2r0

(5)

cos θ2 =
r0
2r1

. (6)

Furthermore, since ADE is an isosceles triangle and AB
is parallel to DC, we have

θ1 + θ2 + 2θ3 = π ⇒ θ3 =
π

2
− 1

2
(θ1 + θ2). (7)

The unit cell angle is now given by

φ = θ1 + θ3. (8)

The lattice constants are given by a = r1, b = 2r0 cos θ3
so that the unit cell aspect ratio is

γ =
2r0
r1

cos θ3. (9)

Using the fact that the unit cell area is given by

ab sin(θ1 + θ3) = 2 ×
√
3
2 `

2 (there are two particles per
unit cell for ZZ1), we have

` =

[
2r0r1√

3
cos θ3 sin(θ1 + θ3)

]1/2
. (10)

Finally, α, β, the coordinates of particle 2 in terms of
the lattice basis set, can be found from αa + βb =
(r0 cos θ1, r0 sin θ1). Solving for α, β, we find

α =
1

r1
[cos θ1 − sin θ1 cot(θ1 + θ3)] (11)

β =
sin θ1

2 cos θ3 sin(θ1 + θ3)
. (12)

Zig-zag 2 phase (ZZ2)

The unit cell is shown in Figure 8(f). The lattice con-
stants are a, b = r1 so that γ = 1. Since ABC and ADC
are identical isosceles triangles, we have

cos
φ

2
=

r1
2r0
⇒ φ = 2 cos−1

r1
2r0

. (13)

Using Eq. (13) and the fact that the unit cell area is given

by r21 sinφ = 2× (
√
3
2 `

2) (there are two particles per unit
cell for ZZ1), we have

` = r1

(
sinφ√

3

)1/2

. (14)

r1/r0 Phase η
All HEXH 0.907
1.41 RH (≈ Square) 0.785
1.5 HEXL 0.403
1.5 CH 0.555
1.5 ZZ1 0.653
1.5 ZZ2 0.704

1.618 CH 0.510
1.618 ZZ2 0.631
1.73 ZZ2 (≈ Honeycomb) 0.605

TABLE I: Core area fractions η for different phases and values
of r/r0.

Finally, α, β can be found from αa + βb =
(r0 cos φ2 , r0 sin φ

2 ). Solving for α, β, we find

α = β =

(
r0
r1

)2

. (15)

The core area fraction η = πr20/(2
√

3`2) for the phases
above for different values of r/r0 discussed in the paper
are listed in Table 1.


