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I. EQUILIBRIUM CONCENTRATIONS IN THE
PRESENCE OF EXTERNAL PRESSURE

To understand the system presented in the main
manuscript we describe a two-phase system and aim to
obtain the change in the equilibrium concentrations when
an external pressure is added to the droplet. For a
demixed system to be stable, the dilute and the droplet
phase need to reach an equilibrium in both chemical
potential and osmotic pressure. Assuming an infinite
system and given the free energy density of the system
f(V, P, ¢), the equilibrium volume fractions in the droplet
and dilute phase, ¢9 and @9, respectively, fulfil the re-
lations [2],

0 :f/( gut) - fl( ?n) and
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where the free energy density is differentiated with re-
spect to the volume fraction. Note that for clarity
we used here a slightly different notation than in the
main manuscript. The expressions @on, ¢Ou, and @5
here used, correspond to ¢eq, ¢, and ¢i, in the main
manuscript, respectively. These equations can be solved
using a Maxwell construction as shown in Figure S.1
(purple dotted line). Analogously, when there is a pres-
sure jump P at the interface between phases the new
equilibrium concentrations ¢; and ¢g, reach a pressure
balance,

0= f(¢i?) - f(@iﬁt) + (d’fﬂt - (ZS?I?)fI(QSf)%t) + P. (8-2)
The change in equilibrium concentration due to P can
be seen in the corresponding Maxwell construction of this
system, shown in Figure S.1 (red continuous lines). If
the dense phase is tightly packed the molecules can not
compress further and thus f(¢5) ~ f(¢2). Using this
approximation, Eqgs. (S.1b) and (S.2) can be combined
as follows

0= f( gut) - f((bgit) - ( gut - ?n)f/( 2ut)
+ (Pout — G )f (Pows) + P-
Assuming that the pressure increase produces a small

change in concentration we can approximate the free en-
ergy at the new volume fraction up to first order,
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f(bou) = f( gut) + f/( gut)((b?)%t - gut) . (S.4)

With this approximation and using ¢; ~ ?n, Eq.
(S.3) reduces to

0= (¢gu — ¢m) [F/(050) = f/(So)] + P (85)
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FIG. S.1. Maxwell construction showing the equilibrium vol-
ume fraction of the droplet phase, ¢7,, and dilute phase, ¢,
in the absence of external pressure, Eq. (S.1) (purple dot-
ted line) and how these equilibrium values shift to ¢, and
¢ody in the presence of a pressure difference P, Eq (S.2) (red
continuous lines).

Assuming strong phase separation ¢; > ¢ol, and us-

ing the definition of chemical potential u = v f'(¢), where
v is the molecular volume of the phase separating mate-
rial; we obtain an expression for the change of the chem-
ical potential in the dilute phase, due to a change in
pressure,

P = cien [/’[’(e;?lt - :u’gut] (86)
where ¢ip = ¢in /v is the material concentration inside the
droplets. Finally, assuming an ideal dilute phase we can
approximate p(@ou) & kT 10g dout, with kg the Boltz-
mann constant and 7' the absolute temperature, and ob-
tain [1]

P
0
QSZ%t ~ Pout €XP (CinkBT> . (87)
Using the notation of the main manuscript: ¢2,, = ¢o

and ¢ony = Peq, Eq. (S.7) is equivalent to Eq. 1 of the
main text.

II. DERIVATION OF THE COARSE-GRAINED
MODEL

In this section we average over individual droplets and
deduce an equation for the volume fraction v of the ma-
terial present in the droplet phase, it is defined as

JII > Vio(ai — )dv

(S.8)
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FIG. S.2. Comparison of the three models used in this work
(at a late time point): Full Model Equation (Egs. 4-5), Re-
duced Model Equation (Egs. 8), and Piecewise Model Equa-
tion S.15

where the integrals are performed over a small volume V
used for coarse graining the system. Assuming monodis-
persity inside such a volume, the average radius (R) of
the droplets can be approximated by

3. 3¢
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where n(Z) is the droplet number density, defined as the
number of droplets present in each discretization volume
divided by V. If the droplets have similar enough size,
then they change volume at similar rates and n does not
change over time. From the dynamical equation for the
radius of the full model (Eq. (4) in the main manuscript)
we obtain the growth rate of a droplet of volume V;
R
(bin (bin

Coarse-graining this equation, we get

Oyt = w///z:&é(f—fi)dv, (S.11)

where the integral is again performed over V. It can be
approximated by the average radius multiplied by

/// ZRZ«(S(;T:’— Z)dV ~ (R)Vn(T),

which in turn can be approximated using Eq. (S.9),
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The equation for ¢(Z,t) comes directly from applying the
definition of ¥(Z,t) to the dynamical equation for ¢ of
the full model (Eq. (5) of the main manuscript), thus
yielding the reduced model

O = 4mnD (¢ — ¢*) (

487202 1/3
st n w) , (S.14a)

Op =D (¢ — ¢*) <¢
8¢ = DV?¢ — Oy,

which we use in the main text.

(S.14b)

IIT. EXPERIMENTAL COMPARISON

We used our model to explain the observations of the
elastic ripening experiments [1]. Figure S.3 and Figure 2
in the main manuscript highlight that our model captures
the details of the experiments quantitatively. To achieved
this agreement, we initialized the simulation with exper-
imentally measured droplet positions and radii, resulting
in a mean droplet distance of £ = 107.7 um. To account
for the sharp transition between the two materials, we
used an exponentially decaying profile characterized by
a length w,

E(z) = (Estitt — Fsott)(1 — /%) + Egorp, >0
B Esoft X S 0 )

which is illustrated in the left panel of Fig. S.3. The
transition length w was the only fitting parameter used
to match the dynamics of the dissolution front. The
remaining parameters were measured independently [1]:
D = 50um/s?, ¢ = 0.5, and npkpT = 11 MPa, implying

FE = 22MPa and the time scale tp = 232s.

IV. DERIVATION OF THE DISSOLUTION
FRONT DYNAMICS

Following the arguments given in the main manuscript,
we now calculate the front dynamics at late times, where
the front invading the stiff side has travelled a distance L
which is much bigger than the transition length, L > w.

In the area devoid of droplets the dynamics reduce to
a simple diffusion equation whose boundary conditions
are given by ¢.q on the soft and stiff sides. If the front
moves slow enough we can do a steady state approxima-
tion and assume that the area devoid of droplets reaches
equilibrium quickly compared to the front speed. For a
simple domain we can solve the diffusion equation. In
particular, if the elasticity gradient is always in the same
direction, we obtain a piecewise approximation dividing
the system in three parts along the elasticity gradient
direction as follows,

"/} = djsoftv ¢ = ¢soft; x <0 (8153)
1/} =0, (b = (bsoft + %A¢, O<z<L (Sl5b)
Y = seiet, ¢ = Pstiff, x>1L, (S.15¢)

where L is the front position, A¢ = @gtit — Psot With
¢stif‘f/soft = ¢eq(Estiff/soft)7 x = 0 is chosen to match the
position where droplets start to grow instead of shrink,
and gt /stiff are the droplet volume fractions after initial
growth. A comparison of the volume fractions ¢ and
between simulations and the piecewise approximation are
shown in Figure S.2. Integrating Eq. (S.14b) over the
length of the stiff side yields an equation for the flux at
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FIG. S.3. Our model quantitatively captures experimental observations of elastic ripening. The stiff region is defined by an
elasticity profile (left panel). Subsequent images show projections of 3-dimensional simulations (obtained by solving Eqgs. 4-5)
of the droplets (symbols) and the volume fraction ¢ in the dilute phase (density plot with color bar on the right) at the indicated
times. Model parameters are chosen to match the experiments [1]: ¢g = 0.033, ¢in = 1, Esig = 0.0341 B, Feor =3.2-107%*E,
and w = 0.37¢. The mean droplet radius on the stiff side is 0.09 . The shown data is identical to that of Figure 2 in the main

manuscript.
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FIG. S.4. The coarse-grained model (Eq. 8 of the main
manuscript) captures the behavior of the full model (Eqgs. 4-
5) in a wide range of parameters. In particular, the volume
fractions ¢ in the dilute phase (upper panel) and the droplet
volume fractions ¢ (lower panel) agree quantitatively for the
parameter values used in Figure S.3.

=0,

=Dy (¢ +1)|a=o -
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Using the piecewise approximation, Eqs. (S.15), the in-
tegrals can be easily evaluated, so

L o)
at-/o ¢dx+atA (¢ + )dx
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This equation can be rewritten as

-1
21/)stiﬁ) (817)
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Finally, solving for L, we find a diffusive motion for the
front,

L=+/a(t—ty), (S.18)
where tg is such that L(tp) = 0. This expression shows
that the front moves diffusively, with a speed that in-
creases with the elasticity difference and decreases with
higher volume fractions of droplet material ). A compar-
ison between this approximation and the measured front
speed is presented in the main manuscript.

V. SUPPLEMENTARY VIDEOS

Supplementary video 1: Example of a typical simu-
lation with a one dimensional elasticity gradient. Model
parameters are ¢9 = 0.033, ¢in = 1, Ystir = 0.09¢0,
Eyig = 0.15F, By = 1074E, and w = 1.44.

Supplementary video 2: Different visualization of
the elastic ripening process. Video showing the radii
and position of droplets along with the one dimensional
average of the dilute phase over time. Same simulation
as in Fig. 1 and Supplementary video 1.

Supplementary video 3: Simulation with a two di-
mensional sinusoidal elasticity profile. Same parameters
as in Fig. 5.

Supplementary video 4: Simulation with a two
dimensional elasticity profile in the shape of the Max
Planck Society’s logo.
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