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librium Droplet Shapes?

Yanchen Wu, Fei Wang, Shaoping Ma, Michael Selzer, Britta Nestler

In this supplemental document, we present some details for the investigation of equilibrium
droplet shapes on striped and chessboard-patterned surfaces under the influence of three factors:
(a) droplet sizes, (b) contact angles, and (c) the ratios of the hydrophilic area to the hydrophobic
one. In sections S. I-S. III, we illustrate the results of the energy landscape methods and the PF
simulations for droplets on these two patterned surfaces. In section S. IV, we show the code for the
energy landscape model.

S.1 Droplet size

In this part, the contact angles on the hydrophilic and hydrophobic areas of the striped and chessboard-
patterned surfaces are set as 60° and 120°, respectively, i.e. #; = 60°, 6, = 120°. The characteristic
length in Eq. (7) is a constant value . = 40. With varying the droplet size R/L, we obtain the
corresponding energy maps and simulation results.

Figure S1 presents the results from the analytical model and the PF simulation for droplets
with different sizes on the striped patterned surface. From (I) to (III), the ratio R/ L varies from 1 to
4.5. In each panel, (A) and (B) depict the surface energy landscapes in terms of a and b for droplets
with base centers on position 1 and 2, respectively. The energy minima in the deep blue regions are
indicated by different numbers and correspond to the snapshots of the PF simulation results labeled
with the same number in (C). The blue and red stripes in the snapshots depict the hydrophilic and
hydrophobic areas with width L, = L4, = L/2 = 20. The red dashed ellipses with semi-
axes a,b in (I)(C) represent the analytical results, which are obtained from the coordinates of
the energy minima in the energy landscapes. It is observed that the analytical predictions of the
energy landscapes have a good agreement with the simulation results. Moreover, as the ratio R/ L
increases from 1 to 4.5, the number of equilibrated droplets rises from 3 to 5.

Next, we turn to scrutinize the equilibrium shapes of droplets on a more complex pattern, the
chessboard pattern. The surface energy landscapes and the corresponding snapshots of the equi-
librated droplets from the PF simulations are illustrated in Figure S2 and Figure S3, respectively.
In this scenario, we vary the droplet size from R/L = 0.75 to R/L = 0.25. The hydrophobic/hy-
drophilic square lattices (red/blue) have a width of L., = Ly = L/2 = 20. Because of the high
symmetry of the chessboard pattern, the elliptical base line of droplets may have a symmetric-axis
which is rotated counterclockwise by 45° with respect to the horizontal direction, as sketched by
the dot dashed line in Figure 2(c). The corresponding surface energy landscapes are calculated in a
rotated system with 0; = (01 4 d2)/v/2 and &, = (§; — 05)/+/2 and the results are shown in Figure



n

100 n—
100 120 140 160 180 200 100 120 140 160 180 200

(”I)zeo

240
220
b
200

180

160
200 250 300 350 400 200 250 300 350 400

a a

Figure S1: Surface energy landscapes for droplets with different sizes on the chemically striped
patterned surfaces and the snapshots of the equilibrated droplets via PF simulations. (I) R/L = 1,
(II) R/L = 2.5, (III) R/L = 4.5, The chemical heterogeneities are described by fi(rs,¢) in
Eq. (7) with the following parameters: v,, = 0, 79 = 0.5, £ = 100, L = 40, A = 0. At
equilibrium, the droplet base center stays either on Py (i = 1) (the center of the hydrophilic stripes,
in blue color) or P(: = 0) (the center of the hydrophobic stripes, in red color). The energy
landscapes are accordingly calculated by using different values of 7. The contour lines indicate the
energy levels (red for high values and blue for low values). The energy minima are highlighted
by different numbers in (A) and (B) in each panel, corresponding to the snapshots labeled with
the same number in (C). The red dashed ellipses with semi-axes a, b in (I)(C) show the analytical
results from the energy landscape method. Reproduced with permission from Ref.! Copyright
2019 American Physical Society.
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Figure S2: Surface energy landscapes for droplets with different sizes on the chessboard-patterned
surfaces and the snapshots of the equilibrated droplets through PF simulations (I) R/L = 0.75,
(I) R/L = 0.5, (III) R/L = 0.25. The chemical heterogeneities are described by f5(rp, ) in
Eq. (7) with ,,, = 0, 70 = 0.5, £ = 100, L = 40, A = 0. The energy minima are illustrated
by different numbers inside the gray circles. The equilibrated states at these energy minima are
sequentially shown in Figure S3(I)-(III). The surface energy landscapes for (A)&(B), (C)&(D),
and (E) correspond to droplets with base center positions on P, P», and Ps, respectively. In
each panel, (A) and (C) describe the situation where a and b are in the horizontal and vertical
directions, respectively. While (B), (D), and (E) depict a system which is rotated counterclockwise
by 45°. In the rotated system, d; and &, in f3(, @) are substituted by &, and &,, respectively, with
51 = ((51 + (52)/\/5 and (5,2 = ((51 — (52)/\/5
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Figure S3: Snapshots for the equilibrated droplets with different sizes on the chessboard patterned
surface via PF simulations (blue: hydrophilic, red: hydrophobic) (I) R/L = 0.75, (I) R/L = 0.5,
(MI) R/L = 0.25.

S2(B), (D), and (E) in each panel. Typical equilibrated droplet morphologies for the energy min-
ima in Figure S2(I) (B) are displayed in Figure S3(I) (2) and (3). It is noteworthy that in Figure S2
(D (C) and (D), which correspond to the non-rotated and rotated systems, respectively, the values
of a and b are the same at the minimal energy states. These two energy minima actually predict
an identical equilibrated shape, as shown in Figure S3(I) (4). The similar findings are observed
in Figure S3(II) (1) and (3) as well as in Figure S3(III) (1) and (2). Similar to the striped and
chocolate patterned surfaces, the increase in the droplet size leads to more equilibrium shapes.

S.II Contact angle

In this section, we investigate the equilibrated droplet shapes affected by the contact angles on the
hydrophilic (¢,) and hydrophobic () areas. The chosen parameters for §; and 6, are shown in
Table 1. The characteristic length is constant L = 40. Droplets with the same size (R/L = 1) on
the two chemically patterned surfaces are considered.

As three typical examples, Figure S4(1), (II), and (III) display the surface energy landscapes
and the snapshots of the simulated equilibrium droplets on the striped-patterned surface for con-
tact angle pairs (30°,90°), (90°, 150°), (120°, 180°), respectively. From (I) to (III) as 0 increases,
the equilibrated morphologies tend to approach a spherical shape. Moreover, the number of the
equilibrium states in (II) and (III) is less than that in (I).



Figure S4: Surface energy landscapes for droplets on the striped patterned surfaces with different
contact angles and the corresponding snapshots of the equilibrated droplets from the PF simula-
tions. (I) #; = 30°,6, = 90°, (I) #; = 90°, 6, = 150°, (III) #; = 120°, 0, = 180°. The chemical
heterogeneities are described by f1 (74, ¢) in Eq. (7) with £ = 100, L = 40, A = 0. The parameters
Yms Yo are adjusted according to the contact angle pairs. The energy minima are indicated by dif-
ferent numbers, corresponding to the snapshots in (C) labeled with the same number. The surface
energy landscapes for (A) and (B) delineate the situation where the droplet base center positions
are on P, and P, respectively. (C) Snapshots of the equilibrated droplets through PF simulations
(blue: hydrophilic, red: hydrophobic).
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Figure S5: Surface energy landscapes for droplet on the chessboard-patterned surfaces with differ-
ent contact angles and the corresponding snapshots of the equilibrated droplets through PF simu-
lations (I) 6; = 30°, 6, = 90°, (II) 6, = 90°, 60, = 150°, (III) #; = 120°, 6, = 180°. The chemical
heterogeneities are described by f5(rp, ) in Eq. (7) with £ = 100, L = 40, A = 0. The param-
eters 7v,,, Yo are modified according to the contact angle pairs. The energy minima are indicated
by different numbers, corresponding to the snapshots in Figure S6(1)-(III) labeled with the same
number. The surface energy landscapes for (A)&(B), (C)&(D), and (E) correspond to the droplet
base center positions on P;, P, and Ps, respectively. (A) and (C) describe the situation where a
and b are in the horizontal and vertical directions, respectively While (B), (D), and (E) depict a
system which is rotated counterclockwise by 45°. In the rotated system, d; and Js in f3(r, ) are
substituted by &, and &,, respectively, with §, = (§; + &5)/v/2 and 6, = (6, — 62)/V/2.

We further turn to the chessboard pattern. Figure S5(I), (II), and (III) picture the surface en-
ergy landscapes for droplets on the chessboard patterned surfaces for contact angles (30°,90°),
(90°,150°), and (120°,180°), respectively. In each panel, (A)&(B), (C)&(D), and (E) are for
droplets with base centers on P, P,, and P3, respectively, among which (B), (D), and (E) are
calculated in the rotated system. Figure S6 (I), (II), and (III) shows the snapshots of the simu-
lated equilibrium droplet shapes, corresponding to the sequentially indicated energy minima in



Figure S6: Snapshots of the equilibrated droplets on the chessboard patterned surfaces through PF
simulations (blue: hydrophilic, red: hydrophobic) (I) 6; = 30°, 6, = 90°, (II) ; = 90°, 6, = 150°,
I1) 6; = 120°, 6, = 180°.

Figure S5 (I), (II), and (III), respectively. Since the density of the hydrophilic/hydrophobic lines
for the chessboard patterned surfaces is higher than that of the striped and chocolate patterned sur-
faces, the energy landscapes become much more complex, which causes a substantial increase in
the number of the equilibrated droplet shapes. The tendency that the evolution of the droplet mor-
phologies towards a spherical shape with an increase in the average contact angle is also observed
in this case.

S.III The ratio of the hydrophilic area to the hydrophobic area

The average contact angle # can also be adjusted by tuning the area ratio of the hydrophilic area to
the hydrophobic area while fixing the intrinsic contact angles on these two areas. Here, we set the
contact angles on the hydrophilic and hydrophobic areas as §; = 60° and 0, = 120°, respectively.

The area ratio of the hydrophilic area to the hydrophobic area is characterized by the pa-
rameter v. For the striped surfaces with v = 1 : 1, 1 : 2, 1 : 3, the surface energy landscapes
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Figure S7: Surface energy landscapes for droplets on the striped surfaces with different area
fractions of the hydrophilic and hydrophobic areas and the corresponding snapshots of equili-
brated droplets through PF simulations. The ratios for 1) » = 1 : 1, ) v = 1 : 2, (IID)
v = 1 : 3 correspond to three different setups with (L = 20, A = 0), (L = 30, A\ = cos60°),
(L = 40, X\ = cos45°), respectively. The droplet size is set as R = 40. The chemical hetero-
geneities are described by f1(r, ¢) in Eq (7) with ,,, = 0, 79 = 05, £ = 100. The energy minima
are marked by different numbers, corresponding to the snapshots in (C) labeled with the same
number. The energy landscapes in (A) and (B) are for the situations where the droplet base center
positions are on P; and P, respectively. (C) Snapshots of the equilibrated droplets via simulations
(blue: hydrophilic, red: hydrophobic).
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and the snapshots of the equilibrated droplets from the PF simulations are shown in Figure S7 (I),
(), and (III), respectively. A good agreement between the energy landscape model and the PF
model is observed. As v decreases, the equilibrated droplet becomes spherical successively and N
decreases.

S. IV Code for the energy landscape model

In this section we present the code for calculating the surface energy landscapes. For different
patterned surfaces, the corresponding descriptions of f are used.

Listing 1: surfaceEnergy.m
function y=f(phi)
global prop;
9%(gamma_m, gamma_0) —> (theta_1 ,theta_2), here (pi/3,2%xpi/3)

gamma.m = 0;
gamma 0 = 0.5;
L = 40; %L 1s the characteristic length

r = (prop.a_fsprop.b_f)/sqrt(prop.a_f=*=2«sin(phi)=*=2
+prop.b_fxx2xcos(phi)*%2); %r is here base radius. See Eq.(3)

Jgab_difference is f_k=gamma_ls — gamma_gs (k=1,2,3) see Eq.(7)

Jstriped —pattern , here xi1=100
gab_difference = gamma_m+gamma_Oxtanh (100
cos(2xpixrxcos(phi)/L));

Jchcolate —pattern

Jgab_difference = gammam + gamma Oxtanh (100%(cos (2% pi*rxcos(phi)
/L)

Yosscos (2« pixr=sin(phi)/L)

Y—cos (2« pixr=cos(phi)/L)

Jo—cos (2« pixrxsin(phi)/L)));

Jchessboard —pattern no rotation
Jgab_difference = gamma.m+gamma_Oxtanh (100=
9ocos (2« pixrxcos(phi)/L)=*

Jocos (2« pixr=xsin(phi)/L));

J%chessboard —pattern rotation 45 deg
Yor xcos (phi)—>sqrt (0.5)*r=(sin(phi)+cos(phi))
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Yor+sin (phi)—>sqrt (0.5)*r=(sin(phi)—cos(phi))
J%gab_difference = gammam + gamma_O=xtanh (100=*
9ocos (2« pixsqrt (0.5)*r=(sin(phi)+cos(phi))/L)
9Yosscos (2« pixsqrt (0.5)*r=*(sin(phi)—cos(phi))/L));

9y is to calculate surface energy in liquid—solid contact area
Jopart (bottom). See Eq.(8)
y = 0.5«xr*xx2xgab_difference;

endfunction

function z=cap(fai)
global prop;

r_numerator = (prop.a_fxprop.b_f);

r.denominator = sqrt(prop.a_f=#x2xsin(fai)**2+prop.b_fxx2xcos(fai)
*%2)

r = r_numerator /r_denominator; %r is base radius

r_c = (r#*x24prop.h_f*%2)/(2«prop.h_f); %r_c 1is
curvature radius. See Eq.(2)

beta = acos((r_c—prop.h_f)/r_c); %beta see Eq.(6)

z = r_cx*x2x%(l—cos(beta)); %z is to calculate surface

energy in liquid —gas interface
Jopart (cap) .

endfunction

R = 40;

V = (4/3)#pi*R*x3;
L = 40;

global prop;
fp=fopen(”sigma_r40.dat”, ' w’);

for a=0.5:1:120
for b=0.5:1:120

prop.a_f = a;

prop.b_f. = b;

h = fsolve (@(x) (pi/6)*x*(3xaxb+x*x%x2)—V,1);

prop.h_f = h;

surface_bottom = 4xquad(”f”, 0, pi/2); %surface energy
in A_ls

10
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4xquad(”cap”, 0, pi/2); Psurface

surface_ellipse_cap
energy in A_lg
sigma surface _bottom + surface_ellipse_cap;
total surface energy
fprintf (fp, "%t %t %f\n’, a, b, sigma);
endfor
fprintf (fp, \n’);
endfor

fclose (fp);
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