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Supplementary Figure S1. Effective interaction potential
between pairs of particles in experiments (blue) and the
Lennard-Jones potential used in the simulations. The po-
tential is in units of kBT and the distance r in units of the
particle diameter.

PARTICLE-PARTICLE INTERACTIONS

We followed the procedure to calculate the pairwise
interaction potential between particles based on the two-
point correlation function [1]. As shown in the Fig. S1,
the interactions are essentially repulsive and the poten-
tial decays rapidly with the distance, being negligible for
values of the distance close to the diameter of the parti-
cle. This suggest that, for particles of the size considered
here, the interactions are well described by hard-sphere
potentials. To avoid the classical numerical problems of
dealing with hard spheres (and discontinuous forces) in
the simulations, we considered a Lennard-Jones potential
that also decays rapidly.

However, in colloidal suspensions the particle-particle
interactions are often long ranged, in which case they can
be described with a Yukawa potential.
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Supplementary Figure S2. Bond order parameter curve in a
system where particle-particle interactions are modeled with
a Yukawa potential. Parameters: σ = 0.5, V = 11.3 and
VG/V = 2, which are condition similar to the one from Fig.
2.

Vij(r) = ε
exp

(
− r−dp

dp

)
r − dp

. (1)

To show that the non-monotonic dependence of the
bond order parameter on the molar fraction of strong
particles is a robust result that only requires a repulsive
interaction between particles we performed new simula-
tions where we modeled the particle-particle interaction
with a Yukawa potential. As shown in the Fig. S2, we
obtained the same qualitative result. Note that in these
simulations the ratio of response strength to the external
potentials between strong and weak particles is four.

PARTICLE HEIGHTS IN THE EXPERIMENTS

To calculate the gravitational height of each colloidal
species, we need to account for the balance of four dif-
ferent forces: weight, buoyancy, optical forces, and elec-
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Characteristics of PS particles Characteristics of Si particles

Surface charge anionic anionic

Refractive index 1.59 1.4

Density 1.05 g/cm3 1.85 g/cm3

Diameter 6.24 µm 6.73 µm

F optical (ray optics) 35× 10−3 pN 9× 10−3 pN

TABLE I. Parameters of the particles in the experiments.
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Supplementary Figure S3. Gravitational height of both
species calculated with different parameters from Eq. 2.

trostatic forces. The net force should vanish, so the elec-
trostatic repulsive interaction with the glass substrate
(pre-cleaned with NaOH to make it hydrophilic) should
balance the sum of weight, buoyancy, and optical forces.
We express the electrostatic force as [2]

Fes(d) = −∇Ues(d) =
kBT

lD
exp

(
−d− les

lD

)
, (2)

where d is the distance between the surface of the particle
and the substrate, lD is the Debye length, and les is a
characteristic length. In our case we can assume that
the value of lD is in the range 30 to 60 nm, as estimated
from an experiment with silica particles in distilled water.
Thus, the pre-factor kBT/lD ≈ 0.14 − 0.07 pN. We also
assume that the value of les ≈ 100 − 200 nm, slightly
bigger than the value found for water-lutidine for silica
(90 nm) [3], as distilled water is more polar.

The parameters for the two particle species are sum-
marized in Table I. Figure S3 shows the estimated grav-
itational height as a function of les, in the range 80−220
nm, for four different values of lD, considering a water
refractive index of 1.33 and density of 1.00 g/cm3. In all
cases, we find that the gravitational heights for both par-
ticle species differ by less than 3% of the particle diam-
eter, suggesting that bidispersity effects resulting from
differences in gravitational height are negligible. With

such a small difference in gravitational height is very un-
likely that one particle would go on top of another and
the system can be considered purely two dimensional.

STRENGTH OF THE OPTICAL TRAPS

To verify that, experimentally, the optical potential
is strong enough to trap the strong particles but not the
weak ones, we analyzed the trajectories of individual par-
ticles in the dilute regime. More precisely, we chose a few
particles that, during their trajectory in the initial part of
the experimental acquisition, showed to have some accu-
mulation point, i.e., each particle in its trajectory spend
a few minutes by staying in approximately the same po-
sition, without being stuck.

We manually selected those points and, for a quantita-
tive analysis, we take the relevant part of the trajectory
near that point and apply the FORMA method [4] which
is a method based on a maximum-likelihood-estimator
analysis, and it is able to estimates accurately the conser-
vative and non-conservative components of a force field
acting on a Brownian particle from the analysis of its
displacements. We obtained for Silica particles (weak)
and PS particles (strong), respectively, kweak = 5fN/µm
and kstrong = 11fN/µm. This result suggests that the
stiffness of the strong particles in the minima is approxi-
mately two times higher than that of the weak particles.

We also measured the average modulus of the force
acting on each particle due to the speckle, over the entire
domain. Using geometrical optics in the experimental
speckle profile [5], we obtained Fweak = (9.36± 4.75)fN
and Fstrong = (18.87± 9.63)fN, and for the simulations,
Fweak = (5.81±4.21)fN and Fstrong = (11.61±8.44)fN.
Thus, we obtain the same order of magnitude of the forces
and, more importantly, a similar ratio between the aver-
age forces for strong and weak particles.

COMMENT ON PARTICLE BIDISPERSITY

We preformed a set of experiments with binary solu-
tions that was carried out to determine if bidispersity
influences the measurements of the bond order parame-
ter. We modified the setup by attaching a mechanical
oscillator to a part of the multimode fiber. The vibra-
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Supplementary Figure S4. Six-fold bond order parameter 〈φ6〉
as a function of the molar fraction χ obtained experimentally
with the particles subject only to a Gaussian envelope (trian-
gles) and with the speckle for the experiments (circles) and
the simulations (squares).

tional frequency could be adjusted with DC voltage and
increased up to 12000 rpm. By turning the oscillator on,
we were able to generate a smooth speckle pattern and
create an optical field where the statistical properties of
the speckle are averaged out. This way, we were able to
create a smoothed pattern. The bond order parameter
depends strongly on the presence of strong particles un-
der the speckle field, as seen in Fig.2. However, with a
smooth potential we observed the formation of a crystal-
like structures with bond order parameter in the range
0.9− 0.97, for all χ values (see Fig. S4). As such, we can
confidently conclude that bidispersity does not affect our
measurements.

HIGH DENSITIES

In Fig. S5 we show the bond order parameter in a sys-
tem with 25% more particles than the simulations shown
in the rest of the paper. Even for higher densities the
curve displays a clear minimum and the rearrangement
of the structure for higher molar fractions also occurs,
showing that this phenomenon is robust to considerable
changes in the total density.

VORONOI CELL SIZE

Figure S6 shows the average Voronoi-cell area of the
experiments and simulations from Fig. 2 in the main pa-
per. We find that the Voronoi-cell size are does not vary
significantly as χ changes compared with the particle size.
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Supplementary Figure S5. Bond order parameter curve for
higher densities also displays a minimum. Parameters: σ =
0.5, V = 11.3 and VG/V = 0.67.
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Supplementary Figure S6. Average Voronoi cell area for
the experiments (orange circles) and the simulations (blue
squares) in Fig. 2.

PARTICLE DIFFUSION IN THE SPECKLE
FIELD

We measured the particle’s mean square displacement
at late times in our simulations (t > 1.5× 103τ) and es-
timated the diffusion coefficient, D, from a linear fit of
the time dependence of the mean square displacement.
As can be seen in Fig. S7, the strong particles diffuse
less than the weak ones, as they get trapped in the local
minima of the random potential. Comparing these plots
with Fig. 4, we find that higher diffusion coefficients cor-
respond to lower 〈φ6〉, when more defects are formed and
the particles’ packing is lower.
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Supplementary Figure S7. (a) Strong and (b) weak parti-
cle diffusivity at late times in the same simulations as those
shown in Fig. 4. The diffusivity is in units of d2pτ

−1.

PARTICLE DISTRIBUTION AT THE SPECKLE
INTENSITY PEAKS

We counted also the number of strong and weak parti-
cles situated in minima of the random potential as a func-
tion of χ. As shown in Fig. S8, the minima are mainly
populated by strong particles and the average number of
particles is higher for values of χ above the value where
the six-fold bond order parameter is minimal.

To compute this calculation, we set a threshold to de-
fine the boundaries of the speckle minima to be at 15%
of the maximum intensity. Note that since the intensi-
ties are exponentially distributed the total area of the
regions we are considering correspond to ∼ 20% of the
area of the system (we tried different thresholds and the
results are qualitatively similar). The total number of
particles averaged over 100 samples remains constant as
a function of the molar fraction and there are, on aver-
age, more than one particle in the regions defined by the
threshold.
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Supplementary Figure S8. Number of particles per speckle
peak as a function of the molar fraction in simulations. The
total number of particles is represented by the blues line, the
strong particles by the orange line and the weak by the red
line. These results were obtained from the simulations shown
in Fig. 2 from the main paper.

EFFECTIVE SPECKLE PROPERTIES

We are interested in the limit where the dispersion in
the speckle correlation function, σ, is of the same or-
der as the particle size or smaller. Thus, to calculate
the speckle-induced forces acting on a particle, we need
to consider all intensities over the particle’s cross-section.
We can determine an effective speckle that, at each point,
is the average intensity of the original speckle over a
particle cross-section. This operation, smooths out the
roughness of the intensity surface. This effect can be
seen in Fig. S9, where it is clearly shown that the inte-
gration decreases the height of the intensity minima and
increases the value of the lower intensity regions.

The statistical properties of the effective speckle are
different from those of the original one. Figure S10 shows
a comparison between the intensity distributions for dif-
ferent σ (histograms) and the original one (dashed line).
For high σ, the averaging eliminates the highest inten-
sities but hardly affects the distribution otherwise, as it
remains approximately exponential. However, for lower
σ, both high and low intensities are eliminated and the
distribution is considerably affected. For the lowest σ,
the intensities are narrowly distributed around a well-
defined value.

The shape of the Gaussian intensity correlations also
changes with the averaging. In particular, their disper-
sions increase. Figure S11 shows the dispersion of the
correlations in the effective speckle, σeff , as a function of
the standard deviation of the original speckle, σ. The
dashed line corresponds to σeff = σ. For higher σ, the
averaging does not change the dispersion significantly,
because in this limit the features of the surface are, on av-
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Supplementary Figure S9. Top left, the original speckle inten-
sity surface; the black circle indicates the particle size. Top
right, the effective speckle where each intensity point is an
average of the intensities of the original one. Bottom, profile
of the intensity surface of the original (blue) and the effective
speckle (red) for σ = 0.5. The maximum speckle intensity is
defined as the unit of intensity.
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Supplementary Figure S10. Distribution of the speckle in-
tensities of the effective speckles. 100 samples were used for
each distribution. The dashed line corresponds to the original
intensity distribution, for reference. The maximum speckle
intensity is defined as the unit of intensity.

erage, larger than the particle size. For decreasing σ, σeff

increases with respect to the original value, the speckle
minima become wider and shallower, which leads to a
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Supplementary Figure S11. Relation between the disper-
sion of the speckle correlation function in the original speckle
and the corresponding dispersion measured in the effective
speckle.

lower effective force induced by the speckle on the parti-
cles.

ORIENTATIONAL CORRELATIONS AND THE
HEXATIC PHASE

According to KTHNY theory, two-dimensional col-
loidal solid phases are characterized by long-range ori-
entational order and quasi-long-range positional order,
yielding a constant orientational correlation function,
g6(r) = 〈φ∗6(ri)φ6(rj)δ(r − rij)〉 (with ri the position of
particle i and rij the distance between particles i and j),
and a radial pair correlation function, g(r) = 〈δ(r−rij)〉,
that decays as a power law with the distance [6, 7]. By
contrast, the hexatic phase is characterized by quasi-
long-range orientational order and short-range positional
order, with an orientational correlation function that de-
cays as a power law and a pair correlation function that
decays exponentially.

To study the phase behavior of our system, we com-
puted the orientational correlation function, g6(r). Both
the experimental and numerical results are shown in the
figure S12. We see that, both the experimental and nu-
merical results suggest a hexatic phase close to the min-
imum of the six-fold bond order parameter and a solid
phase at lower and higher values of the molar fraction.
Note that, the spatial range considered here is limited by
the confining potential to a maximum distance of 10×
times the particle diameter. We cannot discard the pos-
sibility of quasi-long-range orientational order for values
of the distance larger than this value, as reported in Ref.
[7].
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Supplementary Figure S12. Orientational correlations, g6(r), in experiments (left panel) and simulations (right panel) for
different fractions of strong particles.
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