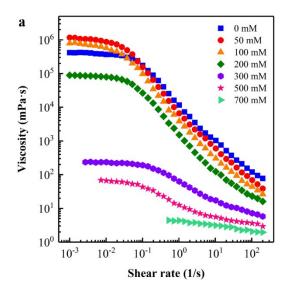
## **Electronic Supplementary Information (ESI) for**

## Effects of sodium chloride on rheological behaviour of the Gemini-like Surfactants

Xinxin Li,<sup>ab</sup> Pengxiang Wang,<sup>ab</sup> Xiaoyu Hou,<sup>ab</sup> Fang Wang,<sup>ab</sup> Han Zhao,<sup>ab</sup> Bobo Zhou,<sup>ab</sup> Hongwen Zhang,<sup>ab</sup> Hongbin Yang<sup>ab</sup> and Wanli Kang<sup>\*abc</sup>

<sup>a.</sup> Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum

(East China)), Ministry of Education, Qingdao 266580, P. R. China


<sup>b.</sup> School of Petroleum Engineering, China University of Petroleum (East China), Qingdao

266580, P. R. China.

<sup>c.</sup> Kazakh-British Technical University, Almaty 050000, Kazakhstan

\*Corresponding Author: Wanli Kang, email: kangwanli@upc.edu.cn

Additional Results



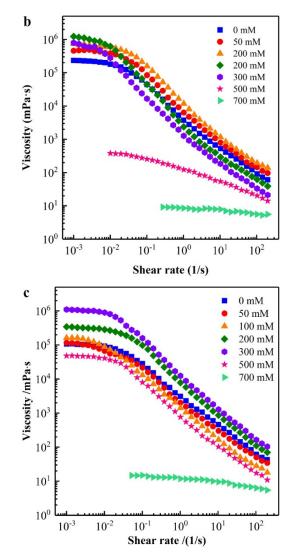
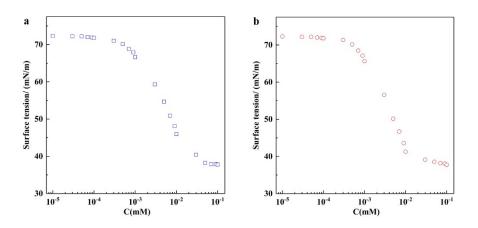
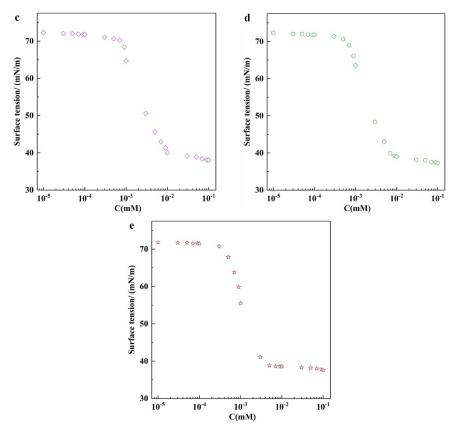





Fig.S1 Steady rheological curves of 15 mM EAPA solutions at different NaCl concentrations and  $25 \ ^\circ C$ 





**Fig.S2** Variation in surface tension with concentration of *p*-EAPA at 25 °C (a: C(NaCl)=0 mM, b: C(NaCl)=50 mM, c: C(NaCl)=100 mM, d: C(NaCl)=200 mM, e: C(NaCl)=300 mM.)

The C(NaCl) refers to the NaCl concentration of 15 mM p-EAPA, and different concentrations of p-EAPA were obtained by diluting 15 mM p-EAPA.

The minimum average area per surfactant molecule  $A_{\min}$  was calculated by Gibbs adsorption equation:

$$\Gamma_{\max} = -\frac{1}{2.303nRT} \left(\frac{\partial \gamma}{\partial \log C}\right)_{T}$$
$$A_{\min} = \frac{1}{N_{d}\Gamma_{\max}}$$

where,  $\Gamma_{\text{max}}$  (µmol/m<sup>2</sup>) is the saturated adsorption amounts of the surfactants,  $(\partial \gamma / \partial \log C)_T$  is the slope of the surface tension curve, R = 8.31 J / (mol·K), T = 298.15 K,  $N_A = 6.02 \times 10^{23}$ , n is a constant which depends on the number of species constituting the surfactant and which are adsorbed at the interface. And n takes 2 for an ionic surfactant where the surfactant ion and the counterion are univalent, while n takes 3 for Gemini surfactants. Therefore, n takes 3 in this research.

The length lc(cm) and volume  $V(cm^3)$  of hydrophobic chain of surfactants was obtained by characteristic parameters of surfactants:

$$l_c = (1.50 + 1.265n_c) \times 10^{-8}$$
$$V = (27.4 + 26.9n_c) \times 10^{-24}$$

Where  $n_c$  is the number of carbon atoms in hydrophobic chain of surfactants and takes 21 according to the structure of UC<sub>22</sub>AMPM.

According to the  $A_{\min}$ , lc and v, the packing parameter p can be calculated by  $p=V/A_{\min}lc$ . And the calculated results were listed in the Table.S1.

| C(NaCl)/mM | <i>lc</i> (nm) | <i>V</i> (nm <sup>3</sup> ) | $A_{\min}(nm^2)$ | p      |
|------------|----------------|-----------------------------|------------------|--------|
| 0          | -              |                             | 0.653            | 0.3232 |
| 50         |                |                             | 0.623            | 0.3388 |
| 100        | 2.8065         | 0.5923                      | 0.578            | 0.3651 |
| 200        |                |                             | 0.503            | 0.4196 |
| 300        |                |                             | 0.459            | 0.4598 |

Table.S1 The Surface parameters of *p*-EAPA system at different NaCl concentrations and 25 °C