Supporting Information

Polymorphism of asymmetric catalysts based on amphiphilic lipopeptides in solution

Juliane N. B. D. Pelin,^[a,b] Charlotte J. C. Edwards-Gayle,^[b] Andrea M. Aguilar,^[c] Amanpreet Kaur,^[b] Ian W. Hamley,^{[b],*} Wendel A. Alves^{[a],*}

^[a]Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, Brazil.

^[b] Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom.

^[c]Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, 09972-270, Brazil.

* Authors for correspondence. wendel.alves@ufabc.edu.br, I.W.Hamley@reading.ac.uk

Figure S1. Mass spectrometry analysis of $PRWG(C_{18}H_{37})$, $PRWG(C_{18}H_{37})_2$, $RWG(C_{18}H_{37})_2$ and $RWG(C_{18}H_{37})_2$ lipopeptides.

Figure S2. Fluorescence intensity as a function of A) $PRWG(C_{18}H_{37})$, B) $PRWG(C_{18}H_{37})_2$, C) $RWG(C_{18}H_{37})$ and D) $RWG(C_{18}H_{37})_2$ concentration, considering the ANS excitation.

Figure S3. Emission spectra for solutions with different concentration of A) $PRWG(C_{18}H_{37})$, B) $PRWG(C_{18}H_{37})_2$, C) $RWG(C_{18}H_{37})$ and D) $RWG(C_{18}H_{37})_2$, in presence of ANS.

Figure S4. Emission spectra for water solutions with different concentration of A)

PRWG($C_{18}H_{37}$), B) PRWG($C_{18}H_{37}$)₂, C) RWG($C_{18}H_{37}$) and D) RWG($C_{18}H_{37}$)₂, considering the intrinsic tryptophan emission.

Figure S5. Cryo-TEM images from 1 wt% solutions of P_1R_1W (1-5) and P_2R_2W (1-5).

Figure S6. TEM images of 1 wt% solutions of P_1R_1C (1-5).

Figure S7. TEM images of 1 wt% solutions of P_2R_2C (1-5).

Table S1. Comparative results of the aldol reactions between *p*-nitrobenzaldehyde and cyclohexanone catalysed by the lipopeptide mixtures in water and cyclohexanone / water condition at native pH.^a

entry ^a	Sample	Catalyst (mol%)	H ₂ O ^b (eq.)	Conv. ^c (%)	anti:syn [°]	Entry ^a	Sample	Catalyst (mol%)	H ₂ O ^b (eq.)	Conv. ^c (%)	anti:syn °
	P_1R_1W						$P_I R_I C$				
1	(1)	5	2	75.7	89:11	31	(1)	5	2	50.7	91:8
2	(2)	5	2	78.8	93:7	32	(2)	5	2	44.5	94:6
3	(3)	5	2	82.9	93:7	33	(3)	5	2	43.4	98:2
4	(4)	5	2	91.5	93:7	34	(4)	5	2	39.3	93:7
5	(5)	5	2	94.7	93:7	35	(5)	5	2	50.9	93:7
	$P_I R_I W$						$P_I R_I C$				
6	(1)	20	2	92.0	87.13	36	(1)	20	2	73.2	75.25
7	(2)	20	2	92.0	07.15	27	(2)	20	2	10.6	96.14
8	(2)	20	2	00.2 00.0	01.0	37	(2)	20	2	49.0 58.0	81.14
9	(4)	20	2	92.5	81.19	39	(4)	20	2	60.0	74.26
10	(5)	20	2	86.7	85.15	40	(5)	20	2	53.7	93.7
	P_1R_1W	20		00.7	05.15	40		20		55.1	,,,,
11	(1)	20	6	95.9	85:15	-	_	-		-	-
12	(2)	20	6	94.1	90:10	-	_	-		_	-
13	(3)	20	6	90.3	89:11	-	_	-		_	-
14	(4)	20	6	95.7	89:11	-	-	-		-	-
15	(5)	20	6	94.0	91:9	-	-	-		-	-
	P_2R_2W						P_2R_2C				
16	(1)	5	2	47.6	91:9	41	(1)	5	2	20.3	88:12
17	(2)	5	2	59.1	88:12	42	(2)	5	2	27.0	91:9
18	(3)	5	2	60.8	87:13	43	(3)	5	2	27.0	89:11
19	(4)	5	2	66.4	92:8	44	(4)	5	2	22.5	96:4
20	(5)	5	2	76.0	93:7	45	(5)	5	2	24.5	93:7
	P_2R_2W						P_2R_2C				
21	(1)	20	2	50.2	82:18	46	(1)	20	2	45.7	73:27
22	(2)	20	2	68.8	78:22	47	(2)	20	2	42.8	75:25
23	(3)	20	2	67.0	75:25	48	(3)	20	2	68.7	75:25
24	(4)	20	2	59.2	86:14	49	(4)	20	2	61.6	64:36
25	(5)	20	2	71.8	89:11	50	(5)	20	2	31.6	80:20
	P_2R_2W										
26	(1)	20	6	77.4	88:12	-	-	-		-	-
27	(2)	20	6	91.8	81:19	-	-	-		-	-
28	(3)	20	6	88.6	86:14	-	-	-		-	-
29	(4)	20	6	85.7	88:12	-	-	-		-	-
30	(5)	20	6	88.8	91:9	-	-	-		-	-

^a The reactions were promoted at room temperature under vigorous stirring for 3 days, using 12 equivalents of cyclohexanone, 1 equivalent of p-nitrobenzaldehyde, 5 and 20 mol% of catalyst;

^b Excess water relative to cyclohexanone (v / v);

^c Conversion and diastereoselectivity were determined by ¹H-NMR analysis of the crude product. (*S*)-2-((*R*)-Hydroxy(4-nitrophenyl)methyl)cyclohexan-1-one

¹**H NMR** (300 MHz, CDCl₃): δ 8.22-8.18 (m, 2H, ArH), 7.51-7.47 (m, 2H, ArH), 5.49 (br s, 1H, CHOH of *syn* diastereoisomer), 4.90 (dd, J = 7.5 Hz, 3.0 Hz, 1H, CHOH of *anti* diastereoisomer), 2.66-2.30 (m, 1H, CHCHOH), 2.66-2.30 (m, 2H, CH₂C(O)), 2.16-1.24 (m, 6H, chex-H).

P₁**R**₁**W 4** - 5 mol%

P₁**R**₁**W 1** - 20 mol%

P₁**R**₁**W 2** - 20 mol%

P₁**R**₁**W 3** - 20 mol%

A(s) 5.49

0.12-4 1-00-T 0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

B(d) 4.90

-130

-25

-20

-15

-0.5

P₁R₁W 2 - 20 mol% water excess

Oct28-2019

C(s) 10.17

-500

ppm.ph CDCI3 {C:\Brui

P₂**R**₂**W 1** - 5 mol%

P₂R₂W 3 - 5 mol%

P₂R₂W 4 - 20 mol%

P₂R₂W 5 - 20 mol%

P₂R₂W 3 - 20 mol% water excess

Figure S8. Representative ¹H NMR spectra of crude aldol products described in Table S1.