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Fig. S1. Height profile from the numerical solution of the Euler-Lagrange equation for δ ∈ {1, 2, . . . , 12} (blue to red solid lines) and asymptotic solution (Eq. (12), dashed
black line).

2 of 10 Monica M. Ripp, Vincent Démery, Teng Zhang, and Joseph D. Paulsen



Fig. S2. Simulation model. (a) Top view of the simulation domain, and lattice elements for the liquid surface and the sheet. (b) Side view. Vertical displacements of the particles
in the sheet are coupled to linear springs that impose a gravitational force.
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Fig. S3. Force versus indentation depth for two indenter speeds, measured in simulations with R = 6 mm, t = 210 nm, E = 0.73 GPa, γ = 39 mN/m, ρ = 909 kg/m3. The
curves are in good agreement, consistent with a quasistatic indentation process.
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The simulation model for nonlinear gravity 

 
Fig. S3. The simulation model for nonlinear gravity. The solid triangle represents a small element 
in the elastic thin sheet. O is the centroid of triangle, and O’ is the centroid of the projected triangle 
on xy plane.  

At large indentation, the elastic sheet undergos geometry nonlinear deformation, which 
requires modification to the gravity force. A small triangular element in the elastic sheet will be 
titled in the current deformed configuration (Fig. S3), effectively reducing the volume of liquid 
lifted by the sold film. The volume change due to the film deformation can be expressed as  𝑉 = 𝐴𝑥𝑦�̅� ,                                                               (1) 
where 𝐴𝑥𝑦 is the projected area of the triangle on xy plane, 𝑧̅ = 1/3(𝑧1 + 𝑧2 + 𝑧3) is the height of 
the centroid (O) of the triangle.  Therefore the gravity energy at large deformation can be written 
as 

      𝑈𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 12 𝜌𝑔𝐴𝑥𝑦(𝑧̅)2 .                                                       (2) 

The force components applied on each node in the triangle can be calculated as 𝑓𝑥𝑖 = − 𝜕𝑈𝑔𝑟𝑎𝑣𝑖𝑡𝑦𝜕𝑥𝑖 = − 12  𝜌𝑔(𝑧̅)2 𝜕𝐴𝑥𝑦𝜕𝑥𝑖 ,                                              (3a) 

𝑓𝑦𝑖 = − 𝜕𝑈𝑔𝑟𝑎𝑣𝑖𝑡𝑦𝜕𝑦𝑖 = − 12  𝜌𝑔(𝑧̅)2 𝜕𝐴𝑥𝑦𝜕𝑦𝑖 ,                                              (3b) 

𝑓𝑧𝑖 = − 𝜕𝑈𝑔𝑟𝑎𝑣𝑖𝑡𝑦𝜕𝑧𝑖 = − 13  𝜌𝑔𝐴𝑥𝑦𝑧,̅                                              (3c) 

where i=1,2,3. 

To avoid material penetration, a purely repulsive force is applied to particles in the solid 
film, such as 𝑓𝑖𝑗 = 𝐾𝑐 sin (𝜋𝑟𝑟𝑐 ) 𝑟 < 𝑟𝑐,                                                  (4) 
where 𝐾𝑐 control the strength of the repulsive force, 𝑟𝑐 is the cutoff of the interaction and the force is 0 for 𝑟 > 𝑟𝑐. To perform large indentation simulation, we define a small circular region in the center of 
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Fig. S4. Treatment of gravity in simulations reaching large slopes. The solid triangle represents a small element in the elastic thin sheet. O is the centroid of triangle, and O′ is
the centroid of the projected triangle on the x-y plane.
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Fig. S5. Wrinkle-to-crumple transition. (a) Stress-focusing crumples appear at large indentation, as shown here at δ = 1.08 mm for a film with t = 437 nm and R = 11 mm.
(b) The transition is not apparent in the force. (Black circle: δ where crumples appear.) Here, t = 103 nm and R = 11 mm.
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Table S1. Simulation units in LAMMPS (native) and scaled results.

Bending stiffness Length Surface tension Young’s modulus Gravity
LAMMPS units eV Å eV/Å2 eV/Å3 eV/Å4

Scaled units α eV β Å (α/β2) eV/Å2 (α/β3) eV/Å3 (α/β4) eV/Å4
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Geometric approach: Energy functional

The axisymmetric configuration is described by a function ζ(r), which describes the height of the sheet. The boundary condition
at r = 0 is given by the poking amplitude,

ζ(0) = −δ. [1]

The sheet extends up to a radius W , which is given by length conservation:∫ W

0

√
1 + ζ′(r)2dr = R. [2]

In general, the boundary condition at W is given by continuity relations, and the profile of the liquid surface should be solved
for. Here, we assume that the length over which the sheet is deformed is much smaller than R and we can write ζ(W ) = 0.

The energy is the sum of the gravitational energy,

Ugravity = πρg

∫ W

0
rζ(r)2dr, [3]

and the surface energy, which is given by the excess area of the exposed liquid interface:

Usurface = πγ(R2 −W 2); [4]

we choose the convention so that Usurface = 0 in the flat state.
Since we have assumed that ζ(r) ' 0 for r ∼W , we can extend the function ζ(r) over [0,∞], and we can write

Ugravity = πρg

∫ ∞
0

rζ(r)2dr, [5]

R−W =
∫ ∞

0

[√
1 + ζ′(r)2 − 1

]
dr. [6]

If we assume that the inward motion of the edge of the film is much smaller than its radius, we get for the surface energy:

Usurface = πγ(R+W )(R−W ) ' 2πγR
∫ ∞

0

[√
1 + ζ′(r)2 − 1

]
dr. [7]

Finally, the total energy is

U = Ugravity + Usurface = π

∫ ∞
0

(
ρgrζ(r)2 + 2γR

[√
1 + ζ′(r)2 − 1

])
dr, [8]

and the boundary conditions are ζ(0) = −δ, limr→∞ ζ(r) = 0.

Limiting shape at large indentation

Using `curv as the unit length, the Euler-Lagrange equation for the profile reads

ζ′′(r) = rζ(r)[1 + ζ′(r)2]3/2. [9]

Here we determine the asymptotic behavior of the solution as r → 0 in the limit of infinite confinement, limr→0 ζ(r) = −∞. In
this limit, |ζ′(r)| � 1 and the equation reduces to

ζ′′(r) = rζ(r)ζ′(r)3. [10]

Writing the profile as ζ(r) = f(log(r)), the equation for f(u) is

f ′′(u)− f ′(u) = f(u)f ′(u)3. [11]

We have to determine which term dominates in the left hand side. If f ′′(u) dominates, we arrive at f ′′ = ff ′3, leading to
f(u) ∼ u1/3; but then f ′′(u)� f ′(u) as u→∞, which is in contradiction with our assumption. We should thus assume that
f ′(u) dominates, leading to f(u)f ′(u)2 = −1, which is solved by f(u) = −(3u/2)2/3, and

ζ(r) ∼
r→∞

−
[3

2 log
(1
r

)]2/3
. [12]

This asymptotic shape is in very good agreement with the numerical integration of the Euler-Lagrange equation (Fig. S1).
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Simulation method

Lattice model. We developed a lattice based numerical model where the elastic sheet is described by a triangular lattice model
(1), and the liquid surface tension is described by a spring with zero rest length (2). The total elastic energy of the triangular
lattice model can be defined as a combination of the stretching energy and bending energy,

Usheet =
√

3
4 Y

∑
ij

(rij − r0)2 + 2√
3
B
∑
αβ

(1− nα · nβ) [13]

where Y is the in-plane stiffness, B is the bending stiffness, rij is the current bond length, r0 is the equilibrium bond length,
and nα and nβ are the normal vectors of nearest neighbors (Fig. S2a). The in-plane stiffness Y = Et and bending stiffness
B = Et3/(12(1− Λ2)) of the thin sheet are defined in terms of the Young’s modulus E, Poisson’s ratio Λ, and film thickness t.

The liquid surface tension is modeled as zero-rest length spring, which tends to minimize the spring length and thus the total
surface area. If the springs form an equilateral triangle, the spring constant can be directly linked to the surface tension as:

Uliquid = 1
2
√

3
γ
∑
ij

r2
ij . [14]

We adopted a high resolution lattice model to make sure the deviations of the equilateral triangles are small. The gravity force
was directly applied to the particles in the elastic sheet,

Fgravity = −
√

3
2 r2

0ρgz, [15]

where the force was only along z direction, and the coefficient represents the effective area of a particle in the triangular lattice
model.

We embedded an elastic sheet in a liquid surface within a square simulation domain with periodic boundary conditions. All
the simulations were carried out with molecular dynamics software LAMMPS. A small spherical indenter of radius 110 µm was
adopted in the simulation via the command “fix indent” in LAMMPS. The indenter was slowly moved at a constant speed to
poke the elastic thin sheet, ensuring a quasi-static process. In the simulations, we first followed the metal units in LAMMPS
and then scaled the quantities to physical spaces comparable to experiments. The key units directly used in the simulations
are summarized in Table 1. We scale the energy unit by α and the length unit by β to map the simulations onto a physical
structure comparable to the experimental set up. The scaled units are shown in the second row of Table 1, with two adjustable
parameters α and β. In all the simulations, we set α = 108 and β = 1.2× 105. We use the scaled units in the main text.

During simulations, a Langevin thermostat was adopted to maintain a very low temperature (0.001 K in the simulation
units). We also reduced the indenter speed for a typical simulation and did not observe significant change in the measured
forces (Fig. S3), indicating that the speed of the indenter is sufficiently slow.

Treatment of gravity at large slopes. For the films with R = 44 mm, we carried out our simulations to large amplitude where
the sheet attains large slopes. This situation requires a modified treatment of the gravity force. A small triangular element in
the elastic sheet will be tilted in the current deformed configuration (Fig. S4), effectively reducing the volume of liquid lifted by
the solid film. The volume change due to the film deformation can be expressed as:

V = Axyz, [16]

where Axy is the projected area of the triangle on xy plane, z = 1/3(z1 + z2 + z3) is the height of the centroid (O) of the
triangle. Therefore the gravity energy at large deformation can be written as:

Ugravity = 1
2ρgAxyz

2. [17]

The force components applied on each node in the triangle can be calculated as:

f ix = −∂Ugravity

∂xi
= −1

2ρgz
2 ∂Axy
∂xi

[18a]

f iy = −∂Ugravity

∂yi
= −1

2ρgz
2 ∂Axy
∂yi

[18b]

f iz = −∂Ugravity

∂zi
= −1

3ρgzAxy [18c]

To avoid material penetration, a purely repulsive force is applied to particles in the solid film, such as:

fij = Kc sin
(
πr

rc

)
; (r < rc), [19]

where Kc controls the strength of the repulsive force, rc is the cutoff of the interaction and the force is 0 for r > rc.
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Experimental methods and analysis

Film preparation. We made polymer films by spin-coating solutions of polystyrene (Mn = 99k, Mw = 105.5k, Polymer Source)
in toluene (99.9%, Fisher Scientific) onto glass substrates, following Ref. (3). After the indentation, each film (or a portion of
the film) was retrieved on a silicon wafer. Film thickness was then measured using a white-light interferometer (Filmetrics F3).
Thicknesses were found to be uniform to within 2% when R = 11 or 22 mm, and to within 3% when R = 44 mm.

Force measurements. We measured normal forces using a custom setup that uses a capacitive sensor (PI PiSeca E-852 with
D-510.020) to detect the deflections of a metal cantilever that pushes down on the sheet via a spherical indenter tip. This force
probe is mounted on a computer-controlled vertical translation stage with a resolution of 5 µm. The apparatus was calibrated
by hanging known masses from the indenter. We tested this calibration method with an independent measurement where we
hung a Wilhelmy plate from the intender tip and lowered it into water (ensuring full wetting of the water to the plate), and we
recovered the surface tension of a clean air-water interface to within 1 mN/m.

To identify the moment of contact, we first examine the corresponding video to find its approximate time. The precise
moment of contact is marked by a significant reduction in noise in the capacitive sensor signal. We set δ = 0 to coincide with
this noise drop, and F = 0 is found by averaging the force at earlier times.

Measuring δ∗. Reference (4) defined δ∗ as the point where F/δ3/2 is minimized. Here we measure δ∗ by collapsing the data to
the empirical form F/F∗ = 1

2 [δ/δ∗ + (δ/δ∗)2], where F∗ and δ∗ are free parameters for each measured curve. So long as there is
sufficient data on each side of the crossover, the two methods are essentially equivalent, since the function (x+ x2)/x3/2 is
minimized at x = 1. However, when determining δ∗ by our method, one must ensure that there is sufficient data on each side
of the crossover in order to obtain reliable results.

Crumpling transition

At large indentation depth beyond δ∗∗, the previously-smooth wrinkled pattern becomes concentrated into a discrete set of
deformations, as shown in Fig. S5a. This progression is similar to what is observed when a circular polymer sheet is placed on
a droplet of gradually increasing curvature (5). These structures have been termed “crumples”, and their appearance marks a
symmetry-breaking transition that is traversed as the indentation depth is varied, but their underlying physical mechanism is
not understood (6). Crumples are observed at systematically smaller indentation for thicker films.

One might expect a signature in the normal force when crumples appear, since they are known to focus stress at their
tips (7). Surprisingly, the data are featureless through this transition despite the two distinct morphologies, as shown in
Fig. S5b. This observation can be partially justified in the far-from-threshold framework (8) by noting that both crumples and
wrinkles allow compression with vanishing elastic cost.
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