Electronic Supplementary information

On the interaction of softwood hemicellulose with cellulose surfaces in relation to molecular structure and physicochemical properties of hemicellulose

Polina Naidjonoka,*^a Monica Arcos Hernandez^b Gunnar K. Pálsson ^{c,d}, Frank Heinrich ^{c,f}, Henrik Stålbrand*^g, Tommy Nylander*^{a,h,i}

- ^{b.} Polymer & Materials Chemistry, Department of Chemistry, Lund University, Lund, Sweden
- ^c Department of Physics & Astronomy, Uppsala University, Uppsala, Sweden.
- ^{d.} Institut Laue Langevin, Grenoble, France.
- ^{e.} Department of Physics, Carnegie Mellon University, Pittsburgh PA, USA

^{h.} NanoLund, Lund University, Lund Sweden

¹ Lund Institute of Advanced Neutron and X-ray Science LINXS, Lund, Sweden.

*polina.naidjonoka@fkem1.lu.se

*tommy.nylander@fkem1.lu.se

*henrik.stalbrand@biochemistry.lu.se

TMP anomeric assignation:

Table S1¹H and ¹³C NMR data of the anomeric region for the TMP GGM

<u>Constituent</u>	<u>¹Н (ppm)</u>	¹³ C (ppm)	<u>Annotation</u>	Figure Key	
mannose	5.19	94.86	α-ManpR	Mar	
	4.94	100.23	-4)-β-Manp-(1-, 2-O-Ac	M2	
	4.90	99.64	-4)-β-Manp-(1-, 2-O-Ac	M2	
	4.91	94.77	β-ManpR	Mbr	
	4.84	100.62	-4)-β-Manp-(1-, 3-O-Ac	M3	
	4.76	101.20	β-Manp-(1-	Μ	
	4.74	101.30	-4)-β-Manp-(1-	4Manb	
alucoso	4.53	103.55	-4)-β-Glcp-(1-	Glcb	
giucose	4.52	103.65	4)-β-Glcp-(1-	Glcb	
galactose	5.03	99.84	αGalp-(1-	Gala	
Other polysaccharides					
	4.49	102.76	-3,4)-β-Xylp-(1-	X34b	
	5.28	110.37	α-Araf-(1-3	Ara3	
arabinogalactan	5.10	108.62		Ara3	
β-Galactan	4.64	105.50	-4)-β-Galp-(1-	Galb	

^{a.} Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.

^{f.} NIST Center for Neutron Research, Gaithersburg MD, USA

^{g.} Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden

Table S2. NMR spectra peak assignment for SP Sample

<u>Constituent</u>	<u>Annot</u> ation	<u>Figu</u> re Key	1 <u>¹H</u> (ppm)	<u>13C</u> (pp m)	2 <u>¹H</u> (ppm)	<u>13C</u> (pp m)	3 <u>1H</u> (pp m)	<u>13C</u> (pp m)	4 <u>1H</u> (pp m)	<u>13C</u> (pp m)	5 <u>1H</u> (pp m)	<u>13C</u> (pp m)	6a <u>¹H</u> (pp <u>m)</u>	<u>13C</u> (pp m)	6b <u>1H</u> (pp <u>m)</u>	<u>13C</u> (pp m)
mannose	α- Manp R -4)-β-	Mar	5.18	94. 87												
	Manp- (1-, 2- O-Ac	M2	4.94	100 .23	5.49	72. 82										
	-4)-β- Manp- (1-, 2- O-Ac	M2	4.9	99. 65	5.42, 5.52	72. 72	4.0 4	71. 16	3.8 2	77. 6	3.5 3	76. 14				
	β- Manp R	Mbr	4.88 <i>,</i> 4.91	94. 77												
	-4)-p- Manp- (1-, 3- O-Ac	M3	4.83	100 .72	4.12, 4.2	69. 8	5.1 1	74. 48	4.0 4	74. 28						
	β- Manp- (1-	М	4.76	101 .21	4.07	71. 55	3.6 4	73. 89	3.5 7	67. 75	3.4 3	77. 5	3.9 4	61. 99	4	61. 31
	-4)-β- Manp- (1-	4M anb	4.73	101 .3	4.13	71. 06	3.7 9, 3.8 2	72. 53	3.7 7, 3.8 1	78. 48	3.4 5	75. 94	3.7 5, 3.9	61. 6	3.8 1	61. 8
glucose	-4)-β- Glcp- (1-	Glc b	4.53	103 .55	3.36	73. 89	3.6 9	74. 97	3.6 2	79. 55	3.7 9	77. 5				
	4)-β- Glcp- (1-	Glc b	4.52	103 .65					3.6 9	79. 55						
galactose	αGalp- (1-	Gal a	5.03	99. 84	3.82	69. 5	3.9 4	70. 48	4.0 1	70. 28	3.9 1	71. 94	3.7 5	62. 29		
Other polysaccharid es																
arabino glucuronoxyla n	-3,4)- β-Xylp- (1-	X34 b	4.48, 4.49	102 .77												
	-4)-β- Xylp- (1-	X4b					3.5 6	73. 8			3.3 6, 4.1 3	64. 04				
	α- GlcpA- (1-2	aGlc			3.56	72. 33										
	α-Araf- (1-3	Ara 3	5.28 ¹													
β-Galactan	-4)-β- Galp- (1-	Gal b	4.64	105 .5					4.1 8	78. 77						
Arabinogalact an	-3)-β- Galp- (1-	Gal 3b	4.68	105 .11												

¹from 1D 1H spectrum

SP Mannose region assignation:

Figure S1 Assignment of cross peaks for mannose in HSQC (Table S2).

DLS autocorrelation functions:

Figure S2 Dynamic light scattering correlation functions of mannans obtained for different angles.

SAXS scattering curves:

Figure S3 Scattering curves of TMP and SP GGM samples at concentrations of 5 mg/mL and 20 mg/mL.

Figure S4 Cryo-TEM image of TMP GGM

	Layer	Refractive index	Thickness [Å]	Adsorbed amount [mg/m ²]
	LBG	1.416	57	3.1
1	Cellulose	1.424	450	28.1
T	SiOn	1.470	274	
	Si	5.512		
2	LBG	1.408	50	2.4
	Cellulose	1.420	460	27.4
	SiOn	1.466	279	
	Si	5.475		
1	GG	1.418	44	2.5
	Cellulose	1.423	460	28.4
	SiOn	1.467	297	
	Si	5.515		
	GG	1.413	56	2.9
2	Cellulose	1.421	414	24.9
Z	SiOn	1.465	270	
	Si	5.470		
	LvLBG	1.421	37	2.2
1	Cellulose	1.425	394	24.9
	SiOn	1.472	268	
	Si	5.478		
	LvLBG	1.418	35	2.0
2	Cellulose	1.423	439	27.1
2	SiOn	1.471	267	
	Si	5.479		
	TMP	1.417	38	1.9
1	Cellulose	1.413	438	23.7
T	SiOn	1.472	278	
	Si	5.478		
2	TMP	1.417	39	2.0
	Cellulose	1.423	486	30.0
	SiOn	1.471	260	
	Si	5.477		
1	SP	1.416	41	2.0
	Cellulose	1.42	411	24.4
	SiOn	1.468	276	
	Si	5.478		
	SP	1.412	37	1.7
2	Cellulose	1.417	432	24.7
	SiOn	1.468	261	
	Si	5.481		

Table S3 Ellipsometry results obtained by fitting experimental data on cellulose surface to a 3-layer model.

Figure S5 Cellulose film swelling in water as observed with null ellipsometry

Figure S6 Mannan adsorption on hydrophobic surface measured with ellipsometry

Figure S7 Mannan adsorption on cellulose surface measured with ellipsometry

QCM-D data and fitting:

Figure S8 Mannan adsorption on hydrophobic surface measured with QCM-D. Results were fitted to the Voigt viscoelastic model using at least three overtones. Theoretical fit is represented by solid lines.

Figure S9 The adsorbed amount of GG on the cellulose films spin coated at different speeds determined with ellipsometry