Supplementary Information for "Recruitment of actin nucleating proteins on the membrane interface: effects of cholesterol on protein/PI(4,5)P2 interactions"

Ololade Fatunmbi, Ryan Bradley, Sreeja Kutti Kandy, Robert Bucki, Paul A Janmey and Ravi Radhakrishnan

S1. Numerical solutions for reactions

The proposed two step reaction mechanism for mDia2, NWASP and gelsolin is given as:

(i)
$$F + M \rightleftharpoons FM$$
, $N + M \rightleftharpoons AM$ and $G + M \rightleftharpoons GM$
 $K_{fm} = \frac{[FM]}{[F][M]}$, $K_{nm} = \frac{[NM]}{[N][M]}$ and $K_{gm} = \frac{[GM]}{[G][M]}$.
(ii) $FM + n_1P \rightleftharpoons FMP_{n_1}$, $NM + n_2P \rightleftharpoons NMP_{n_2}$ and $GM + n_3P \rightleftharpoons GMP_{n_3}$
 $K_{fp} = \frac{[FMP_{n_1}]}{[FM][P]^{n_1}}$, $K_{np} = \frac{[NMP_{n_2}]}{[NM][P]^{n_2}}$ and $K_{gp} = \frac{[GMP_{n_3}]}{[GM][P]^{n_3}}$.

The rates of reactions for mDia2 can be written as:

$$\frac{d[FM]}{dt} = K_{on}^{fm}[F][M] - K_{off}^{fm}[FM] - \frac{d[FMP_{n_1}]}{dt}
= K_{on}^{fm}([F]_{tot} - [FM] - [FMP_{n_1}])
([M]_{tot} - [FM] - [FMP_{n_1}] - [NM] - [NMP_{n_2}] - [GM] - [GMP_{n_3}])
- K_{off}^{fm}[FM] - \frac{d[FMP_{n_1}]}{dt}$$
(S1)

and

$$\frac{d[FMP_{n_1}]}{dt} = K_{on}^{fp}[FM][P]^{n_1} - K_{off}^{fp}[FMP_{n_1}]
= K_{on}^{fp}[FM] \left([P]_{tot} - n_1[FMP_{n_1}] - n_2[NMP_{n_2}] - n_3[GMP_{n_3}]\right)^{n_1} - K_{off}^{fp}[FMP_{n_1}], (S2)$$

where K_{on} and K_{off} represent the forward and reverse reaction rate constants. At equilibrium $K_{\alpha\beta} = K_{on}^{\alpha\beta}/K_{off}^{\alpha\beta}$ with $\alpha = f, n, g$ and $\beta = m, p$.

At equilibrium,

$$\frac{d[FM]}{dt} = \frac{d[FMP_n]}{dt} = 0$$
(S3)

Substituting this in equations **S1** and **S2**:

$$K_{on}^{fm} \left([F]_{tot} - [FM] - [FMP_{n_1}] \right) \left([M]_{tot} - [FM] - [FMP_{n_1}] - [NM] - [NMP_{n_2}] - [GM] - [GMP_{n_3}] \right) - K_{off}^{fm} [FM] = 0$$
(S4)

and

$$K_{on}^{fp}[FM]\left([P]_{tot} - n_1[FMP_{n_1}] - n_2[NMP_{n_2}] - n_3[GMP_{n_3}]\right)^{n_1} - K_{off}^{fp}[FMP_{n_1}] = 0.$$
(S5)

Substituting for
$$K_{on}^{fm}/K_{off}^{fm}$$
 and K_{on}^{fp}/K_{off}^{fp} :
 $K_{fm} \left([F]_{tot} - [FM] - [FMP_{n_1}] \right) \left([M]_{tot} - [FM] - [FMP_{n_1}] - [NM] - [NMP_{n_2}] - [GM] - [GMP_{n_3}] \right)$
 $- [FM] = 0$
(S6)

and

$$K_{fp}[FM] \left([P]_{tot} - n_1 [FMP_{n_1}] - n_2 [NMP_{n_2}] - n_3 [GMP_{n_3}] \right)^{n_1} - [FMP_{n_1}] = 0.$$
(S7)

Similarly we can write the equations for NWASP as:

$$K_{nm} \left([N]_{tot} - [NM] - [NMP_{n_2}] \right) \left([M]_{tot} - [FM] - [FMP_{n_1}] - [NM] - [NMP_{n_2}] - [GM] - [GMP_{n_3}] \right)$$
$$-[NM] = 0$$
(S8)

and

$$K_{np}[NM]\left([P]_{tot} - n_1[FMP_{n_1}] - n_2[NMP_{n_2}] - n_3[GMP_{n_3}]\right)^{n_2} - [NMP_{n_2}] = 0$$
(S9)

and the equations for gelsolin as:

$$K_{gm} \left([G]_{tot} - [GM] - [GMP_{n_3}] \right) \left([M]_{tot} - [FM] - [FMP_{n_1}] - [NM] - [NMP_{n_2}] - [GM] - [GMP_{n_3}] \right) \left([GMP_{n_3}] \right) \left([GMP_{n_3}] - [GM] - [GMP_{n_3}] \right) \left([GMP_{n_3}] - [GM] - [GMP_{n_3}] \right) \left([GMP_{n_3}] - [GM] - [GMP_{n_3}] \right) \left([GMP_{n_3}] - [GMP_{n_3$$

and

$$K_{gp}[GM] \left([P]_{tot} - n_1 [FMP_{n_1}] - n_2 [NMP_{n_2}] - n_3 [GMP_{n_3}] \right)^{n_3} - [GMP_{n_2}] = 0$$
(S11)

Solving equations S6 to S11 numerically we obtain $[FMP_{n_1}]$, $[NMP_{n_2}]$ and $[GMP_{n_3}]$ as a function of $[P]_{tot}$.

The Hill coefficients $n_1 = 4$, $n_2 = 5$ and $n_3 = 4$ are obtained from molecular simulations. For mDia2 we take association constants $K_{fm} = 60/\mu M$ and $K_{fp} = 0.0001/\mu M^{n1}$ (i.e., dissociation constant $K_{fp}^d = 10\mu M$) [1]. For NWASP, we take $K_{np} = 0.0037/\mu M^{n2}$ (i.e., $K_{np}^d = 3.07\mu M$) [2] and $K_{nm} = K_{fm}$. For gelsolin we take $K_{gm} = 0.01/\mu M$ and $K_{gp} = 0.0001/\mu M^{n3}$ (i.e., $K_{gp}^d = 5\mu M$). The reported dissociation constants for gelsolin varies from $2 - 20\mu M$ [3], hence in the section S2 we describe the effect of varying K_{gm}^d . The membrane binding site concentration is taken to be $[M_{tot}] = 10\mu M$.

S2. Bound and free gelsolin for different gelsolin dissociation constants

Here we vary gelsolin dissociation constants K_{gp}^d as $2\mu M$, $5\mu M$ and $10\mu M$ when $K_{gm} = K_{fm} = 60/\mu M$ and $K_{gm} = 0.01/\mu M$.

Figure S1. Effect of dissociation constant in gelsolin binding when $K_{gm} = 60/\mu M$.

Figure S2. Effect of dissociation constant in gelsolin binding when $K_{gm} = 0.01/\mu M$.

References

[1] Bucki R, Wang Y H, Yang C, Kandy S K, Fatunmbi O, Bradley R, Pogoda K, Svitkina T, Radhakrishnan R and Janmey P A 2019 *Journal of Biological Chemistry* **294** 4704–4722

Figure S3. A. Concentration of bound gelsolin and mDia2 as a function of PI(4,5)P₂ and gelsolin at different mDia2 concentrations in the absence of NWASP when $K_{gm}^d = 100\mu M$, $K_{gp}^d = 5\mu M$, $K_{fm}^d = 0.017\mu M$, $K_{fp}^d = 10\mu M$ and $M_{tot} = 10$. B. Concentration of bound gelsolin and NWASP as a function of PI(4,5)P₂ and gelsolin at different NWASP concentrations in the absence of mDia2 when $K_{gm}^d = 100\mu M$, $K_{gp}^d = 5\mu M$, $K_{nm}^d = 0.017\mu M$, $K_{np}^d = 3.07\mu M$ and $M_{tot} = 10$. C. Concentration of free gelsolin and bound mDia2 as a function of PI(4,5)P2 and gelsolin at different mDia2 concentrations in the absence of NWASP when $K_{gm}^d = 100\mu M$, $K_{gp}^d = 5\mu M$, $K_{fm}^d =$ $0.017\mu M$, $K_{fp}^d = 10\mu M$ and $M_{tot} = 10$. D. Concentration of free gelsolin and bound NWASP as a function of PI(4,5)P2 and gelsolin at different NWASP concentrations in the absence of mDia2 when $K_{gm}^d = 100\mu M$, $K_{gp}^d = 5\mu M$, $K_{nm}^d = 0.017\mu M$, $K_{mp}^d = 100\mu M$, $K_{dp}^d = 10\mu M$ and $M_{tot} = 10$.

(*Preprint* http://www.jbc.org/content/294/12/4704.full.pdf+html) URL http://www.jbc.org/content/294/12/4704.abstract

- [2] Papayannopoulos V, Co C, Prehoda K E, Snapper S, Taunton J and Lim W A 2005 Molecular Cell 17 181 – 191 ISSN 1097-2765 URL http://www.sciencedirect.com/science/ article/pii/S1097276504007993
- [3] Szatmri D, Xue B, Kannan B, Burtnick L D, Bugyi B, Nyitrai M and Robinson R C 2018 *PLOS ONE* **13** 1–17 URL https://doi.org/10.1371/journal.pone.0201826