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I. FACE-CENTERED-CUBIC CRYSTAL FREE ENERGY INCLUDING SUBSTITUTIONAL DEFECTS

In this section we write down the free energy for the FCC crystal with substitutional defects. Here we do not
consider vacancies and interstitials, as it is well-established that the concentration of these point defects is very
low [1]. As such they are not expected to change the phase behaviour significantly.

Consider the Helmholtz free energy Ftot of a FCC crystal with M lattice sites, N particles, volume V , and temper-
ature T , in which substitutional defects are present. In the following Nsub will refer to the number of substitutional
defects. As everything here is done at constant T , we will leave out temperature in all following expressions and write:

Ftot(M,V,Nsub) = F0(M,V ) + Fd(M,V,Nsub) + Fc(M,Nsub) (S1)

with F0 the defect-free free energy, Fd the free energy of creating Nsub non-interacting defects at specific lattice sites,
and Fc the combinatorial free energy associated with the number of possible realizations of distributing the defects
inside the lattice.

The base free energy is given by

F0(M,V ) = Mf0(ρM ), (S2)

where f0(ρM ) is the free energy per particle of a defect-free lattice at density ρM = M/V , which can be calculated
for any given density ρM using Refs. [2–4].

Next, the total change in free energy associated with the introduction of substitutional defects at specific lattice
sites is given by

Fd(M,V,Nsub) = Nsubfsub(ρM ), (S3)

where fsub is the change in free energy associated with creating a single substitutional defect at a specific lattice
point. This free energy is again measured in Monte Carlo simulations, by letting one of the particles fluctuate in size,
analogous to the method described in the main paper for the Laves phase.

Finally, the combinatorial term in the free energy is given by:

βFc(M,Nsub) = − ln
M !

(M −Nsub)!Nsub!
, (S4)

where β = 1/kBT with kB Boltzmann’s constant.

II. EFFECT OF CONFINING PARTICLES TO THEIR WIGNER-SEITZ CELLS

In the simulations in which we measured the defect free energy of a single antisite defect we confined the particles
to their Wigner-Seitz cells. Specifically, this prevents the formation of additional defects, and keeps the fluctuating
particle at the desired lattice point. Note that we only confined particles to their Wigner-Seitz cells in the simulations
in which we measured the defect free energy.

Importantly, confining particles to their Wigner-Seitz cell has no measurable effect on the equation of state, as
shown in Figure S1. This can be understood as follows: it is only the center-of-mass of the particle that cannot
leave its Wigner-Seitz cell, and, in principle, this still allows the particle to explore a volume much larger than the
typical displacements of particles from their lattice point. Hence, restricting the particles to their Wigner-Seitz cells
has minimal effect on the accessible phase space, outside of the desired effect of confining the defect to a specific
Wigner-Seitz cell.
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FIG. S1: Comparison of the pressure P as measured in simulations with and without confining particles to their Wigner-Seitz
cells. Importantly, restricting the particles to their Wigner-Seitz cells has no measurable effect on the equation of state. Note
that the volume fraction on the x-axis is given by φ = Nπ

6V
σ3
L[(1 − x) + xq3], with q = 0.82 the size ratio, N the number of

particles, V the volume, σL the diameter of the large spheres, and x = Ns
N

= 2
3

the composition with Ns the number of small
particles.

III. LOW CONCENTRATION OF LS ANTISITE DEFECTS

In the main paper, we only considered the possibility of SL defects. Here, we justify this approximation. In
principle, when both types of defect can be present, even when the volume V , and the number of lattice sites M are
held constant, a given composition x can be realized in a number of different ways:

x =
2

3
+
NSL
−NLS

N
. (S5)

Clearly, fixing x only fixes the difference between NSL
and NLS

. Since the combination of x, M , and V determines
our state point in the canonical ensemble, the absolute number of defects is a free parameter that is determined by
minimizing the Helmholtz free energy.

To estimate the importance of the two types of defects, we plot in Figure S2 the Helmholtz free energy per particle at
a fixed composition x = 0.67 as a function of the concentration of LS-defects. Note that for NLS

= 0, the composition
requires that 1% of large particles are replaced by a small particle. Clearly from Figure S2, the concentration of
LS-defects that minimizes the free energy is approximately 0.0002, orders of magnitude smaller than the 1% of SL-
defects associated with this composition. Moreover, the difference in the free energy between the equilibrium defect
concentration and the concentration with no LS-defects is less than 0.0005kBT per particle. Therefore, we can safely
ignore LS-defects because their concentration is so low, and as such they will have a negligible effect on the free energy
(and the phase diagram). Note that this was to be expected considering the high cost in free energy associated with
introducing LS-defects (Figure 2 in the main text).

IV. A FIRST-ORDER ESTIMATE OF THE ANTISITE (AND SUBSTITUTIONAL) DEFECT
CONCENTRATION

Here, we present a convenient, approximate way to estimate the concentration of antisite or substitutional defects.
To this end, we consider a binary crystal at constant pressure P . We now make the approximation that introducing
antisite defects has no effect on the equation of state, and again assume that the defects do not interact. In order to
allow for the creation of SL-defects, we put the crystal in contact with a particle reservoir (e.g. a coexisting fluid)
with N res

S and N res
L small and large particles, respectively. Note that we only allow the direct exchange of large and

small particles between the crystal and the reservoir, so that the total number of particles in each system remains
fixed.
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FIG. S2: Helmholtz free energy per particle at a fixed composition x = 0.67 as a function of the concentration of LS-defects.
The minimum we observe in the free energy corresponds to a very low concentration of LS-defects and has a negligible effect
on the free energy.

The Gibbs free energy of the full system (crystal plus reservoir), can be written as:

Gsys(NS , NL, NSL
, P ) = Gcrys(N

crys
S , N crys

L , P ) +Gres(N
res
S , N res

L , P ). (S6)

Here, N crys
S(L) and N res

S(L) denote the number of small (large) particles in the crystal and reservoir, respectively, and

NS(L) = N crys
S(L) + N res

S(L) is the total number of small (large) particles. Creating an antisite defect corresponds to

exchanging a large particle in the crystal for a small particle from the reservoir. We want to minimize the total Gibbs
free energy with respect to NSL

. For the reservoir, we can then write:(
∂Gres(N

res
S , N res

L , P )

∂NSL

)
NS ,NL,P

= µL − µS , (S7)

where µL and µS are the chemical potential of the large and small species in the reservoir, respectively.
For the crystal, we Legendre-transform the Gibbs free energy, yielding

Gcrys(N
crys
S , N crys

L , P ) = Fcrys(N
crys
S , N crys

L , V ) + PV

= Mf0(ρM ) +NSL
fSL

(ρM )− kBT ln

(
ML!

(ML −NSL
)!NSL

!

)
+ PV, (S8)

where M = N crys
S +N crys

L and ρM = M/V is the density of the defect-free crystal at pressure P . Assuming that the

defects do not affect the equation of state of the crystal, ∂(PV )
∂NSL

= 0. Hence, the derivative of Gsys is given by(
∂Gsys(NS , NL, NSL

, P )

∂NSL

)
NS ,NL,P

= gSL − kBT
∂

∂NSL

ln

(
ML!

(ML −NSL)!NSL !

)
, (S9)

where gSL = fSL + µL − µS is the Gibbs free-energy cost of creating a defect at a specific lattice site. Applying
Stirling’s approximation and minimizing with respect to NSL yields

NSL

ML
' exp(−βgSL

), (S10)

which provides a straightforward estimate of the effect of defects on the composition of the binary crystal.
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