Supporting Information

Surface diffusion in glasses of rod-like molecules posaconazole and

itraconazole: Effect of interfacial molecular alignment and bulk penetration

Yuhui Li¹, Wei Zhang^{1,3}, Camille Bishop², Chengbin Huang¹, M. D. Ediger², Lian Yu^{1*}

¹ School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA

² Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA

³ Current Address: Genentech Inc., South San Francisco, CA, 94080, USA

Corresponding Author. Lian Yu. E-mail: lian.yu@wisc.edu

Figure S1. Viscosity of GSF liquid.¹ The red dashed line is a VFT fit of the viscosity data between 396 and 443 K and extended to higher temperature. The viscosity of GSF at 1.25 T_g (vertical line) is estimated to be 0.25 Pa·s.

Figure S2. Viscosity and structural relaxation time of POS. Solid circles are calculated viscosity from surface grating decay rates (this work) assuming $\gamma = 0.05 \text{ J/m}^2$. Open diamonds are the structural relaxation time τ_{α} from dielectric spectroscopy.² The dashed curve is a VFT fit of τ_{α} . The two *y* axes are related by log η (Pa·s) = log τ_{α} (s) + 8.6. The viscosity of POS at 1.25 T_{g} is estimated to be 7 Pa·s.

Figure S3. Viscosity and structural relaxation time of ITZ. Black circles are viscosity data from Ref.3. Red circles are calculated viscosity from surface grating decay rates (this work) assuming $\gamma = 0.05 \text{ J/m}^2$. The two methods of viscosity measurement are in good agreement. Open blue diamonds are the structural relaxation time τ_{α} from dielectric spectroscopy.⁴ The dashed curve is a VFT fit of τ_{α} . The two *y* axes are related by $\log \eta$ (Pa·s) = $\log \tau_{\alpha}$ (s) + 9. The viscosity of ITZ at 1.25 T_{g} is estimated to be 25 Pa·s.

¹Q. Shi, J. Tao, J. Zhang, Y. Su and T. Cai, *Crys. Growth Des.*, 2019, **20**, 24-28.

² K. Adrjanowicz, K. Kaminski, P. Wlodarczyk, K. Grzybowska, M. Tarnacka, D. Zakowiecki, G. Garbacz, M. Paluch and S. Jurga, *Mole. Pharm.*, 2013, **10**, 3934-3945.

³ S. Zhang, T. W. Lee and A. H. Chow, Crys. Growth Des., 2016, **16**, 3791-3801.

⁴ M. Tarnacka, K. Adrjanowicz, E. Kaminska, K. Kaminski, K. Grzbowska, K. Kolodziejczyk, P. Wlodarczyk, L. Hawelek, G. Garbacz, A. Kocot and M. Paluch, *Phys. Chem. Chem. Phys.*, 2013, **15**, 20742-20752.