Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Two-Step Yielding Behavior of Densely Packed Microgel Mixtures with Chemically Dissimilar Surfaces and Largely Different Sizes

Saori Minami,[†] Takumi Watanabe,[‡] Yuma Sasaki,[‡] Haruka Minato,[‡] Atsushi Yamamoto,[†] Daisuke Suzuki,*^{,‡,¶} and Kenji Urayama^{*,†}

[†] Department of Macromolecular Science and Engineering, Kyoto Institute of Technology,

Sakyo-ku, Kyoto 606-8585, Japan

[‡]Graduate School of Textile Science & Technology, [¶]Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda 386-8567, Japan

Supporting information 1. $\sigma_{c1}^{\text{LAOS}}$ and $\sigma_{c1}^{\text{flow}}$ as a function of ϕ_N for N/NM-0.9 ,0.3 and N/(N)NM-0.09. The values of σ_c determined from the two different methods (LAOS and steady flow measurements) agree well with each other.

Supporting Information 2. ω dependence of *G*' and *G*'' in linear response regime for N/NM-0.3 with $\phi_N = 0.4$ before and after the heating treatment. In the heating treatment, the specimen was heated to 55 °C in the shrunken state above the LCST, and then cooled to 25 °C in the swollen state. No appreciable difference in linear viscoelasticity before and after heating ensures that the packing at 25 °C corresponds to the equilibrium state.

Supporting Information 3. Effect of ionic strength (*I*) on (a) linear dynamic viscoelasticity, (b) steady state flow for the pastes ($\phi = 1$) and (c) particle dimension using the N-microgels in which a finite amount (0.5 mol%) of fumaric acid at pH = 11 (>> pKa for Fac; pKa₁ = 3.1 and pKa₂ = 4.4) at 25 °C. No appreciable effect of *I* is observed in (a)-(c).