Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2020

**Supporting Information** 

# Poly(vinylamine-co-*N*-isopropylacrylamide) Linear Polymer and Hydrogels with Tuned Thermoresponsivity

Thorsten Fischer<sup>a</sup>, Dan E. Demco<sup>a,b\*</sup>, Radu Fechete<sup>b</sup>, Martin Möller<sup>a\*</sup>, Smriti Singh<sup>a\*</sup>

<sup>a</sup>DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany <sup>b</sup>Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania

\*Corresponding authors: Fax: +49-241-233-01

E-Mail: singh@dwi.rwth-aachen.de demco@dwi.rwth-aachen.de moeller@dwi.rwth-aachen.de

## **Table of Content**

| 1.  | Determination of the average molecular weight between two crosslinking point | nts M <sub>c</sub> |
|-----|------------------------------------------------------------------------------|--------------------|
|     |                                                                              | 3                  |
| 2.  | Determination of the copolymerization parameters                             | 3                  |
| 3.  | Figure S1. Copolymerization parameters                                       | 4                  |
| 4.  | Figure S2. Proton spectra of p(NVF-co-NIPAm) before and after hydrolysis     | 5                  |
| 5.  | Table S1. Theoretical and experimental integral ratios                       | 5                  |
| 6.  | Figure S3 Proton NMR spectra of phenylcarbonate telechelic ethylene glycol   | 6                  |
| 7.  | Figure S4. Hydrolysis kinetics                                               | 6                  |
| 8.  | Table S2. Degree of hydrolysis                                               | 7                  |
| 9.  | Figure S5. Frequency dependence of the copolymers on G' and G"               | 7                  |
| 10. | Figure S6. Proton spectrum of the hydrogels                                  | 8                  |
| 11. | Figure S7. Proton NMR spectra of the washed hydrogels                        | 8                  |
| 12. | Figure S8. Proton NMR spectrum of the washing solution                       | 9                  |
| 13. | Figure S9. Time dependence of G' and G'' during the gelation                 | 9                  |
| 14. | Figure S10. UV-Vis spectrum of the swollen gel                               | 10                 |
| 15. | Scheme S1. Gelation of p(VAm-co-NIPAm) with EG-PC                            | 11                 |
| 16. | Figure S11. Rheology of the swollen gels                                     | 12                 |
| 17. | Figure S12. G' and G'' dependence on the frequency of the swollen gels       | 12                 |
| 18. | Figure S13. Boltzmann fits of the temperature induced phase transition       |                    |
|     | of the hydrogels                                                             | 13                 |
| 19. | Figure S14. SEM image of the hydrogel                                        | 13                 |

### Determination of the average molecular weight between two crosslinking points M<sub>c</sub>

The ratio of the phenylcarbonate to amine moieties was kept 1:1, which means that the average molecular weight between two crosslinking points  $M_c$  equals the molecular weight of the average number of NIPAm units between two crosslinking points assuming a statistical distribution of the monomers within the copolymer and a crosslinking efficiency of 100%. The values are given in Table S1.

| VAm:NIPAm ratio | M <sub>c</sub> [g·mol⁻¹] |
|-----------------|--------------------------|
| 1:5             | 565                      |
| 1:4             | 452                      |
| 1:3             | 339                      |

**Table S1**. Theoretical M<sub>c</sub> values of the hydrogels

### Determination of the copolymerization parameters

The copolymerization parameters were determined by the methods of Fineman-Ross and Mayo- Lewis. The Fineman-Ross method uses a linearization of the copolymerization equation (S1)<sup>S1</sup>.

$$\frac{d[A]}{d[B]} = \frac{1 + r_A \frac{[A]}{[B]}}{1 + r_A \frac{[B]}{[A]}} = \frac{[A]}{[B]} * \frac{r_A[A] + [B]}{[A] + r_B[B]}$$
(S1)

With [A] and [B] being the concentration of the monomers and  $r_A$  and  $r_B$  the respective copolymerization parameters. The linearization suggested by Fineman and Ross leads to Equation (2)

$$y * \frac{x-1}{x} = \frac{y^2 r_A}{x} - r_B$$
 (S2)

With  $x = n_A n_B^{-1}$  and  $y = [A] [B]^{-1}$ 

Where  $n_A$  and  $n_B$  is the amount of monomer A and B, respectively. The copolymerization parameters can be determined with the slope  $(r_A)$  and the y-intercept  $(r_B)$  plotting  $y \cdot (x-1) x^{-1}$  against  $y^2 x^{-1}$ .

Determination of the copolymerization parameters by Mayo-Lewis

Another linearization was suggested by Mayo and Lewis (Equation S3)<sup>S2</sup>

$$r_{A} = \frac{[B]}{[A]} [\frac{n_{A}}{n_{B}} \left(1 + \frac{[B]}{[A]} r_{B}\right) - 1]$$
(S3)

Every monomer ratio will result in a straight line. The intersections of these lines will give the copolymerization parameters.



**Figure S1.** Copolymerization parameters determined with the methods of a) Fineman-Ross and b) Mayo-Lewis



**Figure S2.** Proton NMR spectra of p(NVF-co-NIPAm) before and after hydrolysis. It is visible that the signal of the formamide proton nearly disappears after hydrolysis.

| VAm:NIPAm ratio | Integral iso-propyl | Integral formamide |
|-----------------|---------------------|--------------------|
|                 | group I1/6          | goup I6            |
| 1:5             | 5                   | 0.99               |
| 1:4             | 4                   | 1.29               |
| 1:3             | 3                   | 1.01               |

**Table S2**. Theoretical and experimental integral ratios 1:5, 1:4, and 1:3. The integral of the iso-propylgroup was taken as reference.



Figure S3. Proton NMR spectra of phenylcarbonate telechelic ethylene glycol in CDCl<sub>3</sub>.



**Figure S4**. Degree of hydrolysis after 1, 2 and 4 h. The continuous line represents an exponential fit.

| VAm:NIPAm ratio | Degree of hydrolysis [%] |
|-----------------|--------------------------|
| 1:5             | 91.5                     |
| 1:4             | 90.2                     |
| 1:3             | 93.3                     |

**Table S3**. Degree of hydrolysis for the VAm:NIPAm ratios 1:5, 1:4, and 1:3.



**Figure S5**. Frequency dependence of storage modulus (G') and loss modulus (G'') for P(VAmco-NIPAm) linear polymers with VAm:NIPAm monomer ratios of 1:3 (a) and 1:4 (b). The rheometry measurements were made at temperature of 25 °C (squares) and 70 °C (circles). The frequency dependence power law exponents are shown in the figure legend and obtained from the fit with a straight lines.



**Figure S6**. Proton NMR spectrum of the gel prepared inside the NMR tube in  $CDCl_3$  and MeOD in presence of triethyl amine (TEA). The presence of phenol shows the successful conversion of the crosslinker.



**Figure S7**. Proton NMR spectra of the washed hydrogels in  $D_2O$ . It is visible that there is no phenol present



Figure S8. Proton NMR spectrum of the washing solution, where the phenol and (TEA) is present



**Figure S9**. The storage modulus G' and loss modulus G'' in dependence of the time for the gelation of different VAm:NIPAm ratios inside the rheometer.



**Figure S10.** UV-Vis spectra of the swollen gels with different VAm:NIPAm ratio in dependence of the temperature (260 nm, pH = 7, 0.5 °C·min<sup>-1</sup>).



**Scheme S1**. Gelation of P(VAm-co-NIPAm) with phenylcarbonate telechelic ethylene glycol.



Figure S11. Temperature ramp of the swollen gels for the VAm:NIPAm ratio of 1:4 and 1:3.



**Figure S12**. Frequency dependence of the swollen gels with the VAm:NIPAm ratios of 1:4 (a) and 1:3 (b).



**Figure S13** (a) Temperature-induced phase transition curves of poly(VAm-*stat*-NIPAm) hydrogels with different VAm:NIPAm monomer ratios. The data were fitted with Boltzmann functions and shown with continuous lines. (b) Transition temperatures  $T_t$ , and (c) width of transition temperatures  $\Delta T_t$  as a function of monomer ratios obtained from the fits with Boltzmann functions.



Figure S14. SEM image of the hydrogel with the VAm:NIPAm ratio 1:5. The scale bar represents 500  $\mu m.$ 

#### References

S1 M. Fineman and S. D. Ross, *J. Polym. Sci.*, 1950, 5, 259-265.
S2 F. R. Mayo and F. M. Lewis, *J. Am. Chem. Soc.*, 1944, 66, 1594-1601.