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I. ORDER PARAMETERS

The classification of our equilibrium phases was done by examining orientational and positional ordering. To
measure the long-range orientational order, we diagonalised the following second-rank symmetric tensor:

Qλλ =
1

2Np

〈
Np∑
i=1

(
3λ̂i · λ̂i − I

)〉
(1)

where i indicates a generic particle, λ̂ = x̂, ŷ, ẑ denotes its unit orientation vector along its length (L), width (W ) and
thickness (T ), respectively, I is the second-rank unit tensor, and the angular brackets denote ensemble average. When

diagonalised, the tensor Qλλ produces three eigenvalues S2,L, S2,W , and S2,T and their corresponding eigevectors

n̂, m̂, and l̂. For example, the tensor Qzz is related to the largest eigenvalue S2,L, and corresponding eigenvector n̂,
which provides alignment along the particle axis x̂. The calculation of the eigenvalues S2,L, S2,W and S2,T , referred
to as uniaxial order parameters, allows to distinguish between an isotropic phase, where all eigenvalues vanish, and an
ordered phase, where at least one of the eigenvalues is significantly larger than zero. We arbitrarily set the formation
of a uniaxial LC phase when one of the three uniaxial order parameters is at least 0.40 (see Table I). To assess the
system biaxiality, the biaxial order parameter for each axes can be calculated using the same symmetric tensor. To
this end, the following equation is applied:

B2,L =
1

3
(m̂ ·Qxx · m̂ + l̂ ·Qyy · l̂− m̂ ·Qyy · m̂− l̂ ·Qxx · l̂) (2)

The other two biaxial order parameters, B2,W and B2,T , can be calculated from similar expressions. To determine
B2, it is sufficient to monitor the fluctuations of axes perpendicular to the main nematic director. For instance, if
S2,L is the dominant uniaxial order parameter, it is sufficient to monitor B2,L as it indicates the fluctuations along

axes ŷ and ẑ in the planes of m̂ and l̂. Table I shows the criteria to determine the symmetry of the phases observed
in this work and consistent with Ref [1]. In Tables II to VIII, we report the uniaxial and biaxial order parameters of
HBPs with σL = 0.05 to σL = 0.30.

TABLE I: Criteria of uniaxial and biaxial order parameters used in the classification of HBPs.

S2,L S2,T S2,W B2,L or B2,T Phase

0.00 - 0.20 0.00 - 0.20 0.00 - 0.20 - Isotropic

0.40 - 1.00 0.00 - 0.35 0.00 - 0.35 0.00 - 0.30 Uniaxial prolate

0.00 - 0.35 0.40 - 1.00 0.00 - 0.35 0.00 - 0.30 Uniaxial oblate

0.40 - 1.00 0.35 - 1.00 0.35 - 1.00 0.20 - 0.35 Weak biaxial prolate

0.35 - 1.00 0.40 - 1.00 0.35 - 1.00 0.20 - 0.35 Weak biaxial oblate

0.40 - 1.00 0.40 - 1.00 0.40 - 1.00 0.35 - 1.00 Biaxial
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TABLE II: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.05. Absolute errors
are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.060 0.265 0.039 0.019 0.032 0.012

I 0.070 0.286 0.057 0.021 0.061 0.021

I 0.075 0.297 0.086 0.023 0.073 0.025

N−U 0.080 0.310 0.402 0.070 0.195 0.026

N+
U 0.085 0.326 0.257 0.131 0.577 0.037

N+
U 0.090 0.344 0.264 0.164 0.726 0.043

N+
U 0.095 0.375 0.265 0.247 0.894 0.042

Sm+
U 0.100 0.391 0.239 0.233 0.912 0.009

Sm+
U 0.110 0.415 0.261 0.256 0.926 0.035

Sm+
U 0.120 0.437 0.248 0.233 0.931 0.009

Sm+
U 0.130 0.458 0.261 0.233 0.921 0.011

Sm+
U 0.140 0.477 0.275 0.245 0.931 0.018

Sm+
U 0.160 0.513 0.312 0.243 0.907 0.068

Sm+
U 0.180 0.546 0.307 0.243 0.915 0.053

Sm+
B 0.200 0.573 0.431 0.331 0.888 0.208
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TABLE III: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.10. Absolute errors
are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.060 0.265 0.052 0.019 0.052 0.024

I 0.070 0.288 0.081 0.024 0.068 0.023

I 0.075 0.297 0.114 0.024 0.090 0.027

N−U 0.080 0.314 0.595 0.109 0.218 0.007

N+
U 0.090 0.342 0.231 0.160 0.752 0.004

N+
U 0.100 0.373 0.271 0.238 0.863 0.039

Sm+
U 0.105 0.395 0.260 0.249 0.921 0.022

Sm+
U 0.110 0.410 0.248 0.246 0.923 0.016

Sm+
U 0.120 0.429 0.249 0.249 0.940 0.018

Sm+
U 0.130 0.449 0.251 0.243 0.923 0.015

Sm+
U 0.140 0.478 0.265 0.243 0.940 0.019

Sm+
U 0.160 0.507 0.398 0.328 0.901 0.180

Sm+
B 0.180 0.539 0.455 0.385 0.913 0.223

Sm+
B 0.200 0.564 0.562 0.474 0.893 0.387
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TABLE IV: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.15. Absolute errors
are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.060 0.268 0.053 0.026 0.048 0.016

I 0.070 0.292 0.269 0.051 0.184 0.048

N−U 0.078 0.310 0.490 0.115 0.261 0.070

N−U 0.080 0.319 0.602 0.148 0.282 0.080

N−U 0.090 0.343 0.757 0.183 0.261 0.024

N+
U 0.100 0.371 0.290 0.231 0.830 0.044

N+
U 0.110 0.398 0.260 0.209 0.840 0.032

Sm+
U 0.120 0.421 0.357 0.283 0.848 0.111

Sm+
U 0.130 0.445 0.384 0.284 0.833 0.151

Sm+
U 0.140 0.465 0.405 0.293 0.824 0.183

Sm+
U 0.150 0.484 0.389 0.287 0.843 0.156

Sm+
B 0.160 0.503 0.557 0.434 0.843 0.360

Sm+
B 0.180 0.540 0.672 0.566 0.866 0.536
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TABLE V: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.18. Absolute errors
are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.060 0.266 0.061 0.024 0.058 0.024

I 0.070 0.289 0.259 0.051 0.182 0.039

N−U 0.078 0.305 0.515 0.124 0.263 0.064

N−U 0.080 0.314 0.642 0.131 0.219 0.018

N+
U 0.090 0.341 0.258 0.174 0.723 0.029

N+
U 0.100 0.362 0.258 0.205 0.812 0.032

N+
U 0.110 0.387 0.281 0.233 0.861 0.037

N+
U 0.120 0.411 0.413 0.316 0.840 0.113

N+
B 0.130 0.433 0.491 0.375 0.837 0.295

NB 0.140 0.455 0.641 0.498 0.822 0.465

NB 0.150 0.481 0.670 0.520 0.825 0.485

Sm−B 0.160 0.496 0.910 0.588 0.667 0.521

Sm−B 0.180 0.546 0.955 0.647 0.683 0.552

Sm−B 0.200 0.573 0.948 0.646 0.692 0.567
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TABLE VI: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.20. Absolute errors
are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.040 0.225 0.045 0.023 0.037 0.018

I 0.050 0.249 0.054 0.023 0.039 0.013

I 0.060 0.271 0.072 0.026 0.067 0.017

I 0.063 0.280 0.091 0.027 0.045 0.037

I 0.065 0.284 0.157 0.022 0.108 0.049

N−U 0.070 0.297 0.402 0.067 0.186 0.027

N+
U 0.080 0.321 0.314 0.162 0.564 0.079

N+
U 0.090 0.348 0.286 0.196 0.714 0.047

N+
U 0.100 0.371 0.304 0.226 0.774 0.094

N+
U 0.105 0.384 0.364 0.269 0.772 0.131

NB 0.110 0.400 0.558 0.362 0.701 0.372

NB 0.120 0.419 0.584 0.376 0.720 0.395

NB 0.130 0.441 0.592 0.408 0.751 0.417

NB 0.140 0.465 0.643 0.517 0.813 0.459

NB 0.150 0.486 0.658 0.523 0.808 0.517

NB 0.160 0.505 0.709 0.569 0.816 0.579

NB 0.180 0.542 0.727 0.553 0.798 0.566

Sm−B 0.200 0.575 0.792 0.608 0.796 0.668
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TABLE VII: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.25. Absolute errors
are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.040 0.226 0.044 0.021 0.040 0.017

I 0.050 0.249 0.055 0.026 0.050 0.020

I 0.060 0.276 0.086 0.030 0.106 0.027

I 0.063 0.281 0.124 0.030 0.120 0.041

I 0.065 0.285 0.122 0.029 0.140 0.047

N−U 0.070 0.300 0.457 0.109 0.201 0.030

N−U 0.075 0.314 0.581 0.129 0.223 0.037

N−U 0.080 0.324 0.592 0.143 0.269 0.072

N−U 0.090 0.350 0.750 0.203 0.278 0.065

N−U 0.095 0.361 0.787 0.200 0.260 0.042

N+
B 0.100 0.374 0.548 0.344 0.654 0.222

N+
B 0.110 0.398 0.616 0.386 0.663 0.301

NB 0.120 0.423 0.635 0.423 0.687 0.443

NB 0.130 0.446 0.690 0.540 0.780 0.457

NB 0.140 0.463 0.664 0.510 0.788 0.518

NB 0.160 0.507 0.671 0.508 0.783 0.524

NB 0.180 0.542 0.682 0.498 0.767 0.530

NB 0.200 0.570 0.718 0.541 0.783 0.574
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TABLE VIII: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of σL = 0.30. Absolute
errors are less than 5 × 10−3.

Phase P ∗ η S2,T S2,W S2,L B2

I 0.040 0.227 0.047 0.021 0.052 0.021

I 0.050 0.253 0.088 0.026 0.076 0.021

I 0.060 0.280 0.154 0.028 0.180 0.041

N−U 0.068 0.300 0.466 0.010 0.202 0.031

N−U 0.070 0.304 0.515 0.125 0.229 0.051

N−U 0.080 0.328 0.629 0.115 0.263 0.055

N−U 0.090 0.355 0.733 0.182 0.255 0.046

N−U 0.095 0.366 0.727 0.209 0.306 0.054

N+
B 0.100 0.381 0.684 0.365 0.545 0.359

NB 0.110 0.402 0.633 0.418 0.674 0.467

NB 0.120 0.426 0.719 0.497 0.692 0.477

NB 0.130 0.450 0.704 0.542 0.768 0.561

NB 0.140 0.467 0.727 0.571 0.779 0.603

NB 0.160 0.509 0.748 0.587 0.785 0.609

NB 0.180 0.548 0.827 0.658 0.806 0.684
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II. PAIR CORRELATION FUNCTION

To distinguish nematic from smectic phases, we calculated the pair correlation function parallel to the nematic
director(s), which formally reads:

g‖(r‖) =
1

NpρS‖

〈∑
i

∑
j 6=i

δ(r‖ − r‖,ij)

〉
(3)

where ρ = Np/V , Np is the number of particles, V the box volume, δ is the Dirac delta. S‖ is a surface resulting
from the intersection of a sphere with radius half of the simulation box and a plane perpendicular to the nematic
director at a distance r‖ from the center of the sphere. To practically evaluate g‖ in our simulations, we employed
the following expression [3]:

g‖(r‖) =
1

NpρV‖

N(r‖)

Nc
(4)

where Nc is the number of sampled configurations. N(r‖) is the number of times that the distance between two
particles projected along the nematic director, r‖,ij , is in the interval |r‖ + ∆r‖|. Finally, V‖ is the volume of this
region, that can be calculated as

V‖ = π
(
R2∆r‖ − 1/3((r‖ + ∆r‖/2)3 − (r‖ −∆r‖/2)3)

)
, (5)

with R half of the shortest side of the simulation box. In Fig. 1, we present the parallel pair correlation functions for
the prolate nematic, oblate nematic, biaxial nematic, prolate uniaxial smectic, biaxial smectic of prolate symmetry
and biaxial smectic of oblate symmetry.
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FIG. 1: Parallel pair distribution functions, g‖(r‖), along the nematic directors l̂, m̂ and n̂ of an (i) oblate nematic phase at
σL = 0.15 and η = 0.319; (ii) prolate nematic phase at σL = 0.10 and η = 0.342; (iii) biaxial nematic phase at σL = 0.25
and η = 0.487; (iv) uniaxial smectic phase at σL = 0.10 and η = 0.507; (v) biaxial smectic phase with prolate symmetry at
σL = 0.10; η = 0.539; and (vi) biaxial smectic phase with oblate symmetry at σL = 0.18 and η = 0.546.
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III. SMECTIC LAYER THICKNESS

Tables IX to XIII show the average thickness of smectic layers, defined by τ∗ = τ/T of HBPs with σL = 0.05 to
σL = 0.20.

TABLE IX: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of σL = 0.05.

P ∗ η τ∗

0.100 0.391 14.1

0.110 0.415 14.0

0.120 0.437 13.7

0.130 0.458 13.5

0.140 0.477 13.5

0.160 0.513 13.3

0.180 0.546 13.3

0.200 0.573 13.2

TABLE X: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of σL = 0.10.

P ∗ η τ∗

0.105 0.395 14.4

0.110 0.410 14.3

0.120 0.429 14.2

0.130 0.449 14.1

0.140 0.478 13.9

0.160 0.507 13.7

0.180 0.539 13.7

0.200 0.564 13.6
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TABLE XI: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of σL = 0.15.

P ∗ η τ∗

0.120 0.429 14.7

0.130 0.449 14.6

0.140 0.478 14.5

0.150 0.507 14.5

0.160 0.539 14.4

0.180 0.564 14.3

TABLE XII: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of σL = 0.18.

P ∗ η τ∗

0.160 0.496 1.3

0.180 0.546 1.3

0.200 0.573 1.3

TABLE XIII: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of σL = 0.20.

P ∗ η τ∗

0.20 0.575 1.3



13

IV. FREE ENERGY CALCULATION

To gain an insight into the competition between prolate and oblate symmetries close to I−NU transition, we have
compared the Helmholtz free energy of both N+

U and N−U phases. To this end, we applied a fifth-virial Onsager-like
theory developed in our work for monodisperse systems, where the Helmholtz free energy is obtained as a combination
of an entropy of mixing-like term and a correction for many-body interactions via virial expansions [2]. We stress
that we are using a theory developed for monodisperse systems to calculate the free energy of polydisperse systems
and hence our results should only be taken as a qualitative estimation of the free energy difference between the N+

U

and N−U phases at a particular value of η. Interested readers are referred to Ref [2] for additional details. The free
energy calculation of our polydisperse systems are performed in the context of free particle rotation and assumes that
the dominant uniaxial order parameter in the prolate (S2,L) and oblate (S2,T ) nematic phases have the same value.
The four virial coefficients (B2 to B5) are obtained from the S2 calculated by Monte Carlo simulations (reported in
Table II to Table VIII). The phases we consider in this analysis are the NU phases above the I−NU phase boundary
for each polydispersity. For instance, at σL = 0.05, our simulation results indicate the formation of an NU phase
at η = 0.310 with dominant uniaxial order parameter S2 = 0.402. These values of η and S2 are used to obtain
the corresponding virial coefficients and the entropy of mixing-like term for both N+

U and N−U phases. In Fig. 2, the

reduced free energy for N+
U and N−U are shown for each size dispersity. For monodisperse systems, where σL = 0.00,

the free energy of the N+
U phase is lower than the N−U phase, suggesting that the system has a higher propensity to

possess prolate symmetry, in agreement with Ref [2]. In polydisperse systems, the NU phases are generally more likely
to form N+

U phases as well. However, the difference in free energy is such that relatively small density fluctuations, of
the order of the thermal energy, might direct the systems to follow the oblate or prolate route, so determining their
final symmetry. For σL = 0.18 and σL = 0.25, we find that these systems are more likely to form the N−U phase, a
tendency that is consistent with our simulation results.

βF

NP

σL

FIG. 2: Free energy per particle, plotted as a function of length polydispersity, σL. The parameter β is the inverse temperature.
Each point corresponds to the first NU phase that is observed above the I-N phase boundary. Solid and empty circles indicate,
respectively, the free energy of prolate, F ∗N+ ≡ βFN+/Np, and oblate, F ∗N− ≡ βFN−/Np systems as obtained from theory.

With the same theory, the free energies FN+ and FN− of NU phases deep in the NU region are also calculated. Tables
XIV and XV show the estimated values of these free energies in monodisperse and polydisperse systems, respectively.
Similar to what was observed for NU phases just above the I-N phase boundary, the free energy of prolate and oblate
phases deep in the NU region are also very close to one another, suggesting an easy tendency for the systems to
undergo director inversions with density fluctuations.
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TABLE XIV: Reduced free energies of prolate, F ∗N+ , and oblate, FN− , uniaxial nematic phases deep in the NU region of
monodisperse systems. Free energies highlighted in bold indicate the most stable phase.

P ∗ F ∗N+ F ∗N−

0.083 7.717 7.829

0.084 8.163 8.149

0.085 8.221 8.334

0.090 9.143 8.996

TABLE XV: Reduced free energies of prolate, F ∗N+ , and oblate, FN− , uniaxial nematic phases deep in the NU region of
polydisperse systems. Free energies highlighted in bold indicate the most stable phase.

σL

P ∗ 0.05 0.10 0.15 0.18 0.20 0.25 0.30

F ∗N+ F ∗N− F ∗N+ F ∗N− F ∗N+ F ∗N− F ∗N+ F ∗N− F ∗N+ F ∗N− F ∗N+ F ∗N− F ∗N+ F ∗N−

0.068 - - - - - - - - - - - - 6.597 6.606

0.070 - - - - - - - - 6.469 6.512 6.420 6.358 6.642 6.568

0.075 - - - - - - - - - - 7.095 7.079 - -

0.078 - - - - 7.488 7.523 7.289 7.207 - - - - - -

0.080 7.290 7.338 7.628 7.663 7.484 7.559 7.759 7.789 7.742 7.660 7.713 7.749 7.660 7.764

0.085 7.374 7.229 - - - - - - - - - - - -

0.090 8.787 8.917 9.035 8.963 8.933 8.862 8.694 8.822 8.745 8.808 8.630 8.757 8.925 8.839

0.095 10.074 9.936 - - - - - - - - 9.327 9.392 9.271 9.410

0.100 - - 10.038 9.876 10.053 10.023 9.656 9.480 9.718 9.700 - - - -

0.105 - - - - - - - - 10.683 10.603 - - - -

0.110 - - - - 11.112 11.315 10.919 10.956 - - - - - -

0.120 - - - - - - 12.289 12.518 - - - - - -
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V. EQUATION OF STATE

In Fig. 3, we report the η vs P ∗ equation of state for systems of HBPs with polydispersity index σL = (0.00, 0.30).
The reduced pressure, P ∗, is defined as P ∗ ≡ βPT 3, where β is the inverse temperature, P the pressure and T the
particle thickness.

η

𝜎𝐿
𝜎𝐿

𝜎𝐿

𝜎𝐿

𝜎𝐿

𝜎𝐿

𝜎𝐿

𝜎𝐿

FIG. 3: Equation of state η vs P ∗ of HBPs at different values of σL. Solid lines are guides for the eyes.
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