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I. ORDER PARAMETERS

The classification of our equilibrium phases was done by examining orientational and positional ordering. To
measure the long-range orientational order, we diagonalised the following second-rank symmetric tensor:

NP
QM = 2}V<z (3% - Ay _1)> (1)

i=1

where i indicates a generic particle, A = &, §, 2 denotes its unit orientation vector along its length (L), width (W) and
thickness (T'), respectively, I is the second-rank unit tensor, and the angular brackets denote ensemble average. When
diagonalised, the tensor Q™M produces three eigenvalues Sy 1, Sow, and Se v and their corresponding eigevectors

n,m, and 1. For example, the tensor Q** is related to the largest eigenvalue Ss 1, and corresponding eigenvector n,
which provides alignment along the particle axis £. The calculation of the eigenvalues Sy 1, S2 w and Sy 7, referred
to as uniaxial order parameters, allows to distinguish between an isotropic phase, where all eigenvalues vanish, and an
ordered phase, where at least one of the eigenvalues is significantly larger than zero. We arbitrarily set the formation
of a uniaxial LC phase when one of the three uniaxial order parameters is at least 0.40 (see Table I). To assess the
system biaxiality, the biaxial order parameter for each axes can be calculated using the same symmetric tensor. To
this end, the following equation is applied:

BM:%(m-Q“-mHny-i—m-Qw.m—i-Q“-i) (2)
The other two biaxial order parameters, By and By, can be calculated from similar expressions. To determine
Bs, it is sufficient to monitor the fluctuations of axes perpendicular to the main nematic director. For instance, if
Sa. 1, is the dominant uniaxial order parameter, it is sufficient to monitor By ;, as it indicates the fluctuations along
axes § and Z in the planes of m and 1. Table I shows the criteria to determine the symmetry of the phases observed
in this work and consistent with Ref [1]. In Tables IT to VIII, we report the uniaxial and biaxial order parameters of
HBPs with o7, = 0.05 to o7, = 0.30.

TABLE I: Criteria of uniaxial and biaxial order parameters used in the classification of HBPs.

So.r So, T So,w Bo.1, or Ba 1 Phase
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20 - Isotropic
0.40 - 1.00 0.00 - 0.35 0.00 - 0.35 0.00 - 0.30 Uniaxial prolate
0.00 - 0.35 0.40 - 1.00 0.00 - 0.35 0.00 - 0.30 Uniaxial oblate
0.40 - 1.00 0.35 - 1.00 0.35 - 1.00 0.20 - 0.35 Weak biaxial prolate
0.35 - 1.00 0.40 - 1.00 0.35 - 1.00 0.20 - 0.35 Weak biaxial oblate

0.40 - 1.00 0.40 - 1.00 0.40 - 1.00 0.35 - 1.00 Biaxial
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TABLE II: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o7, = 0.05. Absolute errors

are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.060 0.265 0.039 0.019 0.032 0.012
I 0.070 0.286 0.057 0.021 0.061 0.021
I 0.075 0.297 0.086 0.023 0.073 0.025
Ny 0.080 0.310 0.402 0.070 0.195 0.026
NfJ 0.085 0.326 0.257 0.131 0.577 0.037
N$ 0.090 0.344 0.264 0.164 0.726 0.043
N$ 0.095 0.375 0.265 0.247 0.894 0.042
Sm$ 0.100 0.391 0.239 0.233 0.912 0.009
Sm$ 0.110 0.415 0.261 0.256 0.926 0.035
Smﬁ 0.120 0.437 0.248 0.233 0.931 0.009
Sm$ 0.130 0.458 0.261 0.233 0.921 0.011
Sm$ 0.140 0.477 0.275 0.245 0.931 0.018
Smi} 0.160 0.513 0.312 0.243 0.907 0.068
SijL 0.180 0.546 0.307 0.243 0.915 0.053
Smg 0.200 0.573 0.431 0.331 0.888 0.208
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TABLE III: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o5, = 0.10. Absolute errors
are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.060 0.265 0.052 0.019 0.052 0.024
I 0.070 0.288 0.081 0.024 0.068 0.023
I 0.075 0.297 0.114 0.024 0.090 0.027
Ng 0.080 0.314 0.595 0.109 0.218 0.007
N 0.090 0.342 0.231 0.160 0.752 0.004
N 0.100 0.373 0.271 0.238 0.863 0.039
Smy; 0.105 0.395 0.260 0.249 0.921 0.022
Smy; 0.110 0.410 0.248 0.246 0.923 0.016
Smy; 0.120 0.429 0.249 0.249 0.940 0.018
Smy; 0.130 0.449 0.251 0.243 0.923 0.015
Smy; 0.140 0.478 0.265 0.243 0.940 0.019
Smy; 0.160 0.507 0.398 0.328 0.901 0.180
Smy; 0.180 0.539 0.455 0.385 0.913 0.223

Smy; 0.200 0.564 0.562 0.474 0.893 0.387
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TABLE IV: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o5, = 0.15. Absolute errors

are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.060 0.268 0.053 0.026 0.048 0.016
I 0.070 0.292 0.269 0.051 0.184 0.048
Ny 0.078 0.310 0.490 0.115 0.261 0.070
Ny 0.080 0.319 0.602 0.148 0.282 0.080
Ny 0.090 0.343 0.757 0.183 0.261 0.024
N$ 0.100 0.371 0.290 0.231 0.830 0.044
N$ 0.110 0.398 0.260 0.209 0.840 0.032
Sm$ 0.120 0.421 0.357 0.283 0.848 0.111
Sm$ 0.130 0.445 0.384 0.284 0.833 0.151
Smﬁ 0.140 0.465 0.405 0.293 0.824 0.183
Sm$ 0.150 0.484 0.389 0.287 0.843 0.156
Smg 0.160 0.503 0.557 0.434 0.843 0.360
Smg 0.180 0.540 0.672 0.566 0.866 0.536
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TABLE V: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o7, = 0.18. Absolute errors

are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.060 0.266 0.061 0.024 0.058 0.024
I 0.070 0.289 0.259 0.051 0.182 0.039
Ny 0.078 0.305 0.515 0.124 0.263 0.064
Ny 0.080 0.314 0.642 0.131 0.219 0.018
NfJ 0.090 0.341 0.258 0.174 0.723 0.029
N$ 0.100 0.362 0.258 0.205 0.812 0.032
N$ 0.110 0.387 0.281 0.233 0.861 0.037
NJUr 0.120 0.411 0.413 0.316 0.840 0.113
Ng 0.130 0.433 0.491 0.375 0.837 0.295
Ng 0.140 0.455 0.641 0.498 0.822 0.465
Ng 0.150 0.481 0.670 0.520 0.825 0.485
Smp 0.160 0.496 0.910 0.588 0.667 0.521
Smp 0.180 0.546 0.955 0.647 0.683 0.552
Smp 0.200 0.573 0.948 0.646 0.692 0.567
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TABLE VI: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o5, = 0.20. Absolute errors

are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.040 0.225 0.045 0.023 0.037 0.018
I 0.050 0.249 0.054 0.023 0.039 0.013
I 0.060 0.271 0.072 0.026 0.067 0.017
1 0.063 0.280 0.091 0.027 0.045 0.037
1 0.065 0.284 0.157 0.022 0.108 0.049
Ny 0.070 0.297 0.402 0.067 0.186 0.027
N$ 0.080 0.321 0.314 0.162 0.564 0.079
NJUr 0.090 0.348 0.286 0.196 0.714 0.047
N$ 0.100 0.371 0.304 0.226 0.774 0.094
N{g 0.105 0.384 0.364 0.269 0.772 0.131
Ng 0.110 0.400 0.558 0.362 0.701 0.372
Ng 0.120 0.419 0.584 0.376 0.720 0.395
Ng 0.130 0.441 0.592 0.408 0.751 0.417
Ng 0.140 0.465 0.643 0.517 0.813 0.459
Ng 0.150 0.486 0.658 0.523 0.808 0.517
Ng 0.160 0.505 0.709 0.569 0.816 0.579
Ng 0.180 0.542 0.727 0.553 0.798 0.566
Smg 0.200 0.575 0.792 0.608 0.796 0.668
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TABLE VII: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o1, = 0.25. Absolute errors

are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.040 0.226 0.044 0.021 0.040 0.017
I 0.050 0.249 0.055 0.026 0.050 0.020
I 0.060 0.276 0.086 0.030 0.106 0.027
1 0.063 0.281 0.124 0.030 0.120 0.041
1 0.065 0.285 0.122 0.029 0.140 0.047

Ny 0.070 0.300 0.457 0.109 0.201 0.030
Ny 0.075 0.314 0.581 0.129 0.223 0.037
Ny 0.080 0.324 0.592 0.143 0.269 0.072
Ny 0.090 0.350 0.750 0.203 0.278 0.065
Ny 0.095 0.361 0.787 0.200 0.260 0.042
Ng 0.100 0.374 0.548 0.344 0.654 0.222
Ng 0.110 0.398 0.616 0.386 0.663 0.301
Ng 0.120 0.423 0.635 0.423 0.687 0.443
Ng 0.130 0.446 0.690 0.540 0.780 0.457
Ng 0.140 0.463 0.664 0.510 0.788 0.518
Ng 0.160 0.507 0.671 0.508 0.783 0.524
Ng 0.180 0.542 0.682 0.498 0.767 0.530
Ng 0.200 0.570 0.718 0.541 0.783 0.574
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TABLE VIII: Reduced pressure, packing fraction, uniaxial and biaxial order parameters for HBPs of o, = 0.30. Absolute

errors are less than 5 x 1073,

Phase P n So. 1 So,w So.1, B2
I 0.040 0.227 0.047 0.021 0.052 0.021
I 0.050 0.253 0.088 0.026 0.076 0.021
I 0.060 0.280 0.154 0.028 0.180 0.041

Ny 0.068 0.300 0.466 0.010 0.202 0.031
Ny 0.070 0.304 0.515 0.125 0.229 0.051
Ny 0.080 0.328 0.629 0.115 0.263 0.055
Ny 0.090 0.355 0.733 0.182 0.255 0.046
Ny 0.095 0.366 0.727 0.209 0.306 0.054
Ng 0.100 0.381 0.684 0.365 0.545 0.359
Ng 0.110 0.402 0.633 0.418 0.674 0.467
Ng 0.120 0.426 0.719 0.497 0.692 0.477
Ng 0.130 0.450 0.704 0.542 0.768 0.561
Ng 0.140 0.467 0.727 0.571 0.779 0.603
Ng 0.160 0.509 0.748 0.587 0.785 0.609
Ng 0.180 0.548 0.827 0.658 0.806 0.684




II. PAIR CORRELATION FUNCTION

To distinguish nematic from smectic phases, we calculated the pair correlation function parallel to the nematic
director(s), which formally reads:

gn(ry) = Nplpsl <ZZ5(’"| - 7‘|7ij)> (3)

i i

where p = N,/V, N, is the number of particles, V' the box volume, ¢ is the Dirac delta. S| is a surface resulting
from the intersection of a sphere with radius half of the simulation box and a plane perpendicular to the nematic
director at a distance 7| from the center of the sphere. To practically evaluate g| in our simulations, we employed
the following expression [3]:

N(r
gy(r) = Npiﬂq ]E[CI) (4)

where N, is the number of sampled configurations. N(rj) is the number of times that the distance between two
particles projected along the nematic director, 7| ;;, is in the interval |r + Ar||. Finally, V) is the volume of this
region, that can be calculated as

R

Vi = (B2Ary = 1/3((r) + Ary /2)° = (ry — Ary/2)%)) 5)

with R half of the shortest side of the simulation box. In Fig. 1, we present the parallel pair correlation functions for
the prolate nematic, oblate nematic, biaxial nematic, prolate uniaxial smectic, biaxial smectic of prolate symmetry
and biaxial smectic of oblate symmetry.
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FIG. 1: Parallel pair distribution functions, gj(r|), along the nematic directors i, m and i of an (¢) oblate nematic phase at

r = 0.15 and n = 0.319; (i¢) prolate nematic phase at o = 0.10 and n = 0.342; (4i¢) biaxial nematic phase at o, = 0.25
and n = 0.487; (iv) uniaxial smectic phase at o = 0.10 and n = 0.507; (v) biaxial smectic phase with prolate symmetry at
or, = 0.10; n = 0.539; and (vi) biaxial smectic phase with oblate symmetry at or, = 0.18 and n = 0.546.
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IIT. SMECTIC LAYER THICKNESS

Tables IX to XIII show the average thickness of smectic layers, defined by 7* = 7/T of HBPs with o7, = 0.05 to
agr, = 0.20.

TABLE IX: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of o1, = 0.05.

P n T
0.100 0.391 14.1
0.110 0.415 14.0
0.120 0.437 13.7
0.130 0.458 13.5
0.140 0.477 13.5
0.160 0.513 13.3
0.180 0.546 13.3
0.200 0.573 13.2

TABLE X: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of o, = 0.10.

P n T
0.105 0.395 14.4
0.110 0.410 14.3
0.120 0.429 14.2
0.130 0.449 14.1
0.140 0.478 13.9
0.160 0.507 13.7
0.180 0.539 13.7

0.200 0.564 13.6




TABLE XI: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of o, = 0.15.

p* n *
0.120 0.429 14.7
0.130 0.449 14.6
0.140 0.478 14.5
0.150 0.507 14.5
0.160 0.539 14.4
0.180 0.564 14.3

TABLE XII: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of o = 0.18.

P n T
0.160 0.496 1.3
0.180 0.546 1.3
0.200 0.573 1.3

TABLE XIII: Reduced pressure, packing fraction and average thickness of smectic layers for HBPs of o, = 0.20.

P* n T

0.20 0.575 1.3
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IV. FREE ENERGY CALCULATION

To gain an insight into the competition between prolate and oblate symmetries close to I — Ny transition, we have
compared the Helmholtz free energy of both N$ and Ny; phases. To this end, we applied a fifth-virial Onsager-like
theory developed in our work for monodisperse systems, where the Helmholtz free energy is obtained as a combination
of an entropy of mixing-like term and a correction for many-body interactions via virial expansions [2]. We stress
that we are using a theory developed for monodisperse systems to calculate the free energy of polydisperse systems
and hence our results should only be taken as a qualitative estimation of the free energy difference between the N?}
and Ny; phases at a particular value of 7). Interested readers are referred to Ref [2] for additional details. The free
energy calculation of our polydisperse systems are performed in the context of free particle rotation and assumes that
the dominant uniaxial order parameter in the prolate (Sz 1) and oblate (S2,7) nematic phases have the same value.
The four virial coefficients (B to Bj) are obtained from the Sy calculated by Monte Carlo simulations (reported in
Table II to Table VIII). The phases we consider in this analysis are the Ny phases above the I — Ny phase boundary
for each polydispersity. For instance, at o = 0.05, our simulation results indicate the formation of an Ny phase
at n = 0.310 with dominant uniaxial order parameter Sy = 0.402. These values of n and Sy are used to obtain
the corresponding virial coefficients and the entropy of mixing-like term for both N$ and Ny; phases. In Fig. 2, the
reduced free energy for N$ and Ny; are shown for each size dispersity. For monodisperse systems, where o7, = 0.00,
the free energy of the N$ phase is lower than the Ny; phase, suggesting that the system has a higher propensity to
possess prolate symmetry, in agreement with Ref [2]. In polydisperse systems, the Ny phases are generally more likely
to form N[JE phases as well. However, the difference in free energy is such that relatively small density fluctuations, of
the order of the thermal energy, might direct the systems to follow the oblate or prolate route, so determining their
final symmetry. For o, = 0.18 and o7, = 0.25, we find that these systems are more likely to form the N phase, a
tendency that is consistent with our simulation results.

8.00 T T T T T i H

(8]

7.50 - s |

O
o

— 7.00 - n
Np
6.50 8 4
o
6.00 | | I | I | |
0.00 0.05 0.10 0.15 0.20 0.25 0.30

oL

FIG. 2: Free energy per particle, plotted as a function of length polydispersity, . The parameter (3 is the inverse temperature.
Each point corresponds to the first Ny phase that is observed above the I-N phase boundary. Solid and empty circles indicate,
respectively, the free energy of prolate, Fy+ = BFy+/Np, and oblate, Fx_ = SFy- /N, systems as obtained from theory.

With the same theory, the free energies Fiy+ and Fy- of Ny phases deep in the Ny region are also calculated. Tables
XIV and XV show the estimated values of these free energies in monodisperse and polydisperse systems, respectively.
Similar to what was observed for Ny phases just above the I-N phase boundary, the free energy of prolate and oblate
phases deep in the Ny region are also very close to one another, suggesting an easy tendency for the systems to
undergo director inversions with density fluctuations.
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TABLE XIV: Reduced free energies of prolate, Fy,, and oblate, F)y—, uniaxial nematic phases deep in the Ny region of
monodisperse systems. Free energies highlighted in bold indicate the most stable phase.

P L Fy
0.083 7.717 7.829
0.084 8.163 8.149
0.085 8.221 8.334
0.090 9.143 8.996

TABLE XV: Reduced free energies of prolate, Fy ., and oblate, Fy—, uniaxial nematic phases deep in the Ny region of
polydisperse systems. Free energies highlighted in bold indicate the most stable phase.

oL
P 0.05 0.10 0.15 0.18 0.20 0.25 0.30

N+ Fy- | Fye Fy- | FRe Fi- N+ Fa- N+ Ey- N+ Fy- | Fye Fy-
0.068 - - - - - - - - - - - - 6.597 6.606
0.070 - - - - - - - - 6.469 6.512 6.420 6.358 | 6.642 6.568
0.075 - - - - - - - - - - 7.095 17.079 - -
0.078 - - - - 7.488 7.523 7.289 17.207 - - - - - -

0.080 | 7.290 7.338 | 7.628 7.663 | 7.484 7.559 7.759 7.789 7.742 7.660 | 7.713 7.749 | 7.660 7.764

0.085| 7.374 7.229 - - - - - - - - - - - -

0.090 | 8.787 8.917 | 9.035 8.963 | 8.933 8.862 | 8.694 8.822 | 8.745 8.808 8.630 8.757 | 8.925 8.839

0.095 | 10.074 9.936 - - - - - - - - 9.327 9.392 | 9.271 9.410
0.100 - - 10.038 9.876 | 10.053 10.023 | 9.656 9.480 | 9.718 9.700 - - - -
0.105 - - - - - - - - 10.683 10.603 - - - -
0.110 - - - - 11.112 11.315 | 10.919 10.956 - - - - - -

0.120 - - - - - - 12.289 12.518 - - - - - -
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V. EQUATION OF STATE

In Fig. 3, we report the n vs P* equation of state for systems of HBPs with polydispersity index o7 = (0.00,0.30).
The reduced pressure, P*, is defined as P* = SPT3, where 3 is the inverse temperature, P the pressure and T the
particle thickness.
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FIG. 3: Equation of state n vs P* of HBPs at different values of or. Solid lines are guides for the eyes.
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