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An accompanying dataset, including molecular dynamics, KO-
BRA trajectory files and python scripts for plot generation, can
be found in the University of Leeds research data repository at:
doi.org/10.5518/760. We also (at time of writing) maintain a
mirror at: https://bitbucket.org/Robert-Welch/kobra-raw-data/.

1 Material Axis Update
Displacing a node affects not only the segments on either side of
it, but also the orientation of the material axes associated with
those segments. This occurs during a simulation, both when ex-
ecuting node movements during a timestep, or when perturbing
node positions to establish the force on a node. We can use par-
allel transport as described in the main text to transport the ma-
terial axis from the previous (unperturbed) segment to the new
(perturbed) one. For example, if we move the node at position i,
then the two elements pppi and pppi−1 will change, and so we update
the material axis mmmi and mmmi−1:

mmm′i = P(mmmi, llli, lll′iii) = R(llli, lll′iii) ·mmmi (1)

mmm′i−1 = P(mmmi−1, llli−1, lll
′
i−1) = RRR(llli−1, lll

′
i−1) ·mmmi−1 (2)

where mmm′ is the updated material axis, P is an application of par-
allel transport, mmm is the unperturbed material axis, lll is the (nor-
malised) unperturbed segment, lll′ is the (normalised) perturbed
segment, and RRR is the parallel transport rotation matrix.

2 Algorithm and performance
The Ndc80 protein complex is part of a set of molecular machin-
ery responsible for attaching the chromatids to the microtubules
of the mitotic spindle during cell division. These protein com-
plexes are millions of atoms in size, and the forces used to move
the chromatids are generated by the depolymerisation of spindle
microtubules, a process that occurs on timescales of seconds to
minutes1 and length scales of > 100nm.2 It is therefore necessary
to build extremely performant and highly parallel algorithms ca-
pable of reaching these time and length scales.

The rod algorithm is implemented in C++ and is designed
to run with a small memory footprint and cache-optimised data
structures. A simple API allows for arbitrary additional forces and
energies to be applied to the rods, to permit the development of
new features and coupling with other simulations. The structure
of the algorithm as as follows:

• Initialise the rod.

– Read rod header info,

– Allocate memory,

– Read structural data and convert to internal units.

• For each timestep:

– For each node (OpenMP parallel):

∗ Get forces from gradients in energy by perturbing
all degrees of freedom (x, y, z, twist).

– For each node and element twist degree of freedom:

∗ Get thermal noise,

∗ Compute and apply dynamics,

∗ Update material axes.

– If algorithm is at a check timestep:
write to trajectory file

The most intensive computation task is the calculation of the
forces from the gradient of the energy, which is computed using
OpenMP (shared memory) parallelisation and takes around 96%
of the program’s runtime. This gives the program a serial fraction
of 4%, although computing the dynamics in parallel is also possi-
ble. Performance and scaling are given in Fig. 1 and Fig. 2. We
observe that simulation time per timestep is simply proportional
to rod length, and inversely proportional to number of processors
(an ideal scaling).
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Fig. 1 Single-thread performance scaling with rod length, running on an
Intel Xeon E5-2670.

3 Validation of the Equipartition theorem
The equipartition theorem states that the average energy will be
1
2 kBT per degree of freedom (D.O.F) where T is the temperature
and kB is Boltzmann’s constant.

To correctly compute the expected equipartition energy, we
must consider the number of degrees of freedom the system has.
For a rod of N nodes and N−1 segments:

• Number of stretch D.O.F. = N−1
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Fig. 2 Shared memory parallel scaling on a dual Intel Xeon E5-2670
system, with a fixed rod length of 32 nodes.

• Number of twist D.O.F. = N−2

• Number of bend D.O.F. = 2(N−2)

The latter contains a factor of 2 because bending can occur in
two orthogonal directions. Additionally, the entire rod can rotate
and translate in six degrees of freedom, although (in the absence
of inertia) these do not affect the energy.

A test system, composed of 10 elements, with a total equilib-
rium length of 100nm and radius a = 5nm, in a medium with dy-
namic viscosity µ = 0.6913MPa · s (pure water at 310K 3) was sim-
ulated for 10µs. At a temperature of 300K, we would expect the
thermal energy to be 1

2 kBT = 2.07× 10−21J per degree of free-
dom. The mean energies per degree of freedom for this trajectory
are given in table 3, split according to stretching, bending and
twisting.

Stretch (2.11±0.16)×10−21J
Bend (2.16±0.11)×10−21J
Twist (2.06±0.16)×10−21J

Table 1 Average values of the energy in each degree of freedom for a test
rod. All parameters are isotropic and inhomogeneous.

4 Extraction of the bending stiffness matrix from
fluctuations in a dynamic simulation

4.1 Small bending fluctuations and application of equiparti-
tion

If at a given node, i, the average length, Li and the stiffness ma-
trix, BBBi are such that kBT Liλ

−1
min � 1 (where λmin is the smallest

eigenvalue of the stiffness matrix BBBi) then the thermal bending
fluctuations about that node are expected to be small. In such
a case, a simple equipartition argument, leading to Eq. (35) in
the main text, can be used to recover the bending stiffness ma-
trix from the trajectory of a dynamical simulation. This is done
by extracting the covariance matrix (Eq. (32)) of the bending
fluctuations as measured in the simulation.

This method was validated against a trajectory from a KOBRA
rod with known values of BBB, chosen to be both inhomogeneous
(BBB varies along the rod) and anisotropic. Here, the question is
whether we can extract the (known) values of BBB from only the
configurations the rod explores during the simulation. The rod
had total length 257nm and typical length of rod elements 1.2nm
(with 208 rod elements). The smallest eigenvalues of BBB are of or-
der 1.5×10−28m4.Pa (chosen to be in the typical range observed
in NDC80 simulations). In this case the product kBT Liλ

−1
min ≈ 0.034

so that bending fluctuations are expected to be small. A simula-
tion with 2000 frames recorded at intervals of 5ns was analysed.
Fig. 3 compares the known eigenvalues of BBB with the values ex-
tracted from the fluctuations measured in the trajectory using Eq.
(35). Although there remains some statistical sampling error, it
can be seen that the BBB matrix is recovered to within 10%.
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Fig. 3 ’Recovered’ eigenvalues of the BBB matrix from a simulation trajec-
tory, compared to the actual values given to the nodes in that simulation.
Here, the two lines represent the maximum and minimum eigenvalues.

A long trajectory is required in order to gather sufficient statis-
tics of the fluctuations. The mean fractional error due to under-
sampling in the eigenvalues of BBB for a given trajectory length n is
computed for each frame in the trajectory:

δBBB0,n =

√
∆BBB0,n

n

BBB
(3)

Where δBBBn is the error in BBB for all the frames in the trajectory
from 0 to n, ∆BBBn is the difference between the currently calculated
and final (or known) value of BBB and of BBB.

The fractional error in the BBB recovery for the trajectory used to
generate Fig. 3 is shown in Fig. 4. The results for the all-atom
trajectory is shown in Fig. 5.

Note that the timescales of rod and all-atom simulation tra-
jectories are not directly comparable. First, the rod simulation
is overdamped, meaning it explores conformational space more
slowly than the MD simulations which uses an “implicit solvent"
is and is therefore less damped because the solvent (and its vis-
cosity) is not explicitly included in the simulation. Also, in an
all-atom trajectory, there are modes of vibration which occur on
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Fig. 4 Fractional RMSE of the BBB eigenvalues for different fractions of
the sample trajectory used to generate figure 3. The very start of the
trajectory has been truncated to better show the scale.
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Fig. 5 Fractional RMSE of the BBB eigenvalues for different fractions of the
all-atom trajectory. The very start of the trajectory has been truncated
to better show the scale.

smaller timescales, and are not present in the rod simulation.

4.2 An iterative scheme for recovering the values of the B
matrix

As noted in the Section 3.3 of the main text, if the bending fluctu-
ations at a given node are larger, then non-linearities in the map-
ping from the Cartesian co-ordinates of node fluctuations onto the
generalised co-ordinates corresponding to the bending degrees of
freedom means that the probability distribution for bending co-
ordinates are typically perturbed from their initially expected nor-
mal distributions and equipartition does not exactly apply. Under
such circumstances, an iterative method and formula (Eq. 36)
was proposed to recover the BBB matrix from the observed fluctua-
tions.

Increased bending at nodes occurs either if the elements of the
stiffness matrix BBB are smaller, or if the rod is more coarsely dis-
cretised using longer elements. Fig. 6 shows the results of a test
in which we retain the same BBB matrix and overall rod length as

in the simulations for Fig. 3, but decrease the number of rod ele-
ments used to discretise the rod (so that each individual element
is longer). The typical length of rod elements is now 5nm (with
53 elements). In this case the product kBT Liλ

−1
min ≈ 0.14 and the

bending at each node in the trajectory is larger. As seen in Fig. 6a,
application of equipartition via Eq. (35) does not recover the cor-
rect BBB (as the eigenvalues are overestimated). However, a single
iteration of Eq. (36), as shown in Fig. 6b is sufficient to converge
to the correct BBB within the statistical sampling error.
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(a) Original recovery
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(b) Iteration 1

Fig. 6 Maximum and minimum eigenvalues of the BBB matrix using the
iterative parameterisation scheme, compared to known reference values.
After one iteration, the values of BBB have converged.
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