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I. DERIVATION OF EQS. (5) AND (6)

In this Section, we show how Eqs. (5) and (6) in the main text follow from Eq. (4). Without loss of generality, we
orient the reference frame such that the stress fibers are parallel to the y−axis. Thus, θSF = π/2 and n = ŷ (see Fig.
2 in the main text). Since we assume α, σ and n to be constant along an arc, Eq. (4) can be expressed as a total
derivative and integrated directly. This yields

λT + (σÎ + αnn) · r⊥ = C1 , (S1)

where C1 = (C1x, C1y) is an integration constant. Decomposing Eq. (S1) into x− and y−directions yields

λ cos θ = C1x + σy (S2a)

λ sin θ = C1y − (α+ σ)x . (S2b)

Next, taking the ratio of Eqs. (S2), using tan θ = dy/dx and integrating, we obtain a general solution for the shape
of the cellular arc subject to a non-vanishing isotropic stress (i.e., σ 6= 0), namely

1

γ
(x− xc)2 + (y − yc)2 = C2 , (S3)

where C2 is another integration constant and we have set

xc =
C1y

σ + α
, yc = −C1x

σ
, γ =

σ

σ + α
.

Eq. (S3) describes an ellipse centered at (xc, yc) and whose minor and major semi-axis are a =
√
γC2 and b =

√
C2.

Using again Eqs. (S2), we further obtain an expression for the line tension λ as a function of x and y:

λ2 = σ2(y − yc)2 + (σ + α)2(x− xc)2 . (S4)

Using Eqs. (S2) and (S3), this can be also expressed as a function of the turning angle θ, namely

λ2

σ2
= C2

1 + tan2 θ

1 + γ tan2 θ
. (S5)

This expression highlights the physical meaning of the integration constant C2. The right-hand side of Eq. (S5)
attains its minimal value (C2) where θ = 0, hence when the tangent vector is perpendicular to the stress fibers (i.e.,
n · T = 0). Thus C2 = λ2min/σ

2, where λmin is the minimal tension withstood by the cortical actin. Substituting C2

in Eq. (S5) then yields Eq. (5) in the main text. The maximum value of the line tension is found at θ = π/2, where
the stress fibers are parallel to the arc, and is given by λmax = λmin/

√
γ.

Substituting C2 in Eq. (S3) yields an implicit representation of the plane curve approximating individual cellular
arcs, namely

σ2

γλ2min

(x− xc)2 +
σ2

λ2min

(y − yc)2 = 1 . (S6)

This equation describes an ellipse centered at the point (xc, yc) and oriented along the y−direction, whose minor and
major semi-axes are a = λmin

√
γ/σ and b = λmin/σ respectively (Fig. 2). For arbitrary stress fiber orientation θSF,

Eq. (S6) can be straightforwardly generalized to find Eq. (6) in the main text.

II. ANGULAR COORDINATES OF THE ADHESION SITES

With reference to the schematic representation of Fig. 2 in the main text, the coordinates of the center of the
ellipse can be expressed as:

xc =
d

2
cosφ− γρ sinφ , (S7a)

yc =
d

2
sinφ+ ρ cosφ , (S7b)
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where the length scale ρ is defined in Eq. (17) in the main text. From Eqs. (S7), standard algebraic manipulations
allow us to express the angular coordinate ψ of the adhesion sites in the frame of the ellipse (Fig. 2a), namely

tanψ0 =
d sinφ+ 2ρ cosφ

d cosφ− 2γρ sinφ
, (S8a)

tanψ1 =
d sinφ− 2ρ cosφ

d cosφ+ 2γρ sinφ
. (S8b)

III. ESTIMATE OF THE NEMATIC ORDER PARAMETER VIA ORIENTATIONJ

In this Section, we demonstrate how the nematic director and order parameter can be estimated using ImageJ
plugin OrientationJ (http://bigwww.epfl.ch/demo/orientation). Given the intensity I(x0, y0) of the image (channel

with TRITC-Phalloidin) at the point (x0, y0), we defined the symmetric 2 × 2 matrix Ĵ = 〈∇I∇I〉, where 〈· · · 〉 =∫
w(x, y)dxdy (· · · ) represents a weighted average with w(x, y) a Gaussian with a standard deviation of five pixels

(0.69 µm) centered at (x0, y0). The Ĵ matrix can be expressed as:

Ĵ = (Λmin − Λmax)

(
eminemin −

1

2
Î

)
+

Λmax + Λmin

2
Î , (S9)

where Λmax and Λmin are the largest and smallest eigenvalues of Ĵ , emin the eigenvector corresponding to Λmin, and
Î the two-dimensional identity matrix. The Ĵ matrix was then used to estimate the average stress fiber direction u:

〈∇I∇I〉
〈|∇I|2〉

= Î − 〈uu〉 . (S10)

Here, the quantity Î − 〈uu〉 reflects that the largest gradients in intensity are perpendicular to the orientation of the

stress fibers and 〈|∇I|2〉 = tr Ĵ = Λmax + Λmin. Combining Eqs. (S9) and (S10), we obtain〈
uu− 1

2
Î

〉
=

Λmax − Λmin

Λmax + Λmin

(
eminemin −

1

2
Î

)
. (S11)

Comparing this with the definition of the nematic tensor:

Q̂ =

〈
uu− 1

2
Î

〉
= S

(
nn− 1

2
Î

)
, (S12)

we found the nematic order parameter S and the nematic director n at each pixel:

S =
Λmax − Λmin

Λmax + Λmin
, n = (cos θSF, sin θSF) = emin . (S13)

If a pixel has zero actin expression, I(x0, y0) = 0, and consequently S = 0.

IV. NUMERICAL METHODS

A. Cell contour update

In order to update the position of the cell contour, we first calculate the line tension λ by discretizing Eq. (23) as
follows:

λk = λ0 − α0

k∑
n=1

∆sn Tn ·
〈
Q̂n

〉
·Nn , k = 1, 2 . . . Narc , (S14)

where λ0 is the line tension at the adhesion site at s = 0 (position r0) and λk is the line tension at vertex k (position
rk). Narc is the total number of vertices in which cellular arcs are discretized, and λNarc

represents the line tension
at the other adhesion site. Furthermore, ∆sn = |rn − rn−1|, Tn = (rn − rn−1)/∆sn, Nn = T⊥n and〈

Q̂n

〉
=

Q̂n + Q̂n−1

2
, (S15)

http://bigwww.epfl.ch/demo/orientation
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FIG. S1. Schematic overview of the three geometrical situations described in Sec. IV B. (A) There is a single ghostpoint on
the x− or y−axis. (B) There are two ghost points, one on each axis. (C) There are two ghost points on the same axis and
possibly a third one on the other axis.

with Q̂n and Q̂n−1 the nematic tensor at the vertices n and n−1. These are set equal to Q̂ at the closest bulk lattice
point inside the cell among the four points, delimiting the unit cell of the bulk lattice, containing the edge vertices n
and n− 1 respectively. If none of these is inside the cell, we set Qxx,n = Qxy,n = 0. The quantity λ0 is calculated in
such a way that the minimal λ value along an arc equates the input parameter λmin, representing the minimal tension
withstood by the cortical actin.

Next, the position of the vertices rk, k = 0, 1 . . . Narc is updated upon integrating Eq. (24a) using the forward
Euler method with time step ∆t. The curvature and normal vector at vertex k, κk and Nk, are found by constructing
a circle with radius R through vertices k− 1, k, and k+ 1. The vector from vertex k to the center of the circle is then
equated to ±RNk, with the sign such that Nk is an inward pointing normal vector, and κk = ±1/R, with a negative
sign for a concave shape and a positive sign for a convex shape. Along each arc, r0 and rNarc

represent the positions
of the adhesion sites and are kept fixed during simulations.

B. Cell bulk update

Eq. (24b) is numerically solved at each lattice point inside the cell via a finite-difference scheme. Time integration
is performed using the forward Euler method with time step ∆t, whereas spatial derivatives are calculated using the
centered difference approximation. In order to calculate derivatives at lattice points located in proximity of the edge,
we use the boundary conditions, specified in Eq. (20) in the main text, to express the values of Qxx and Qxy in a
number of ghost points located outside the cells. This is conveniently done upon identifying three possible scenarios,
illustrated in Fig. S1. 1) There is a single ghost point on the x− or y−axis (Fig. S1A). 2) There are two ghost points,
one on each axis (Fig. S1B). 3) There are two ghost points on the same axis and possibly a third one on the other
axis (Fig. S1C). In the following, we explain how to address each of these cases.

1) Using the centered difference approximation for the first derivative yields the following expression of the nematic
tensor at a ghost point located at (x±∆x, y) or (x, y ±∆y), with ∆x = ∆y the lattice spacing:

Qij(x±∆x, y) = Qij(x∓∆x, y)± 2∆x ∂xQij(x, y) , (S16a)

Qij(x, y ±∆y) = Qij(x, y ∓∆y)± 2∆y ∂yQij(x, y) . (S16b)

The derivative with respect to x in Eq. (S16a) can be calculated from Eq. (20), upon taking N = ±x̂, where the plus
(minus) sign correspond to a ghost point located on the left (right) of the central edge point. Thus N ·∇Qij = ±∂xQij .
Analogously, the derivative with respect to y in Eq. (S16b), is approximated as N · ∇Qij = ±∂yQij , where the plus
(minus) sign corresponds to a ghost point located below (above) the central edge point. Combining this with Eq.
(20), yields:

Qij(x±∆x, y) = Qij(x∓∆x, y)− 4∆x
W

K
[Qij(x, y)−Q0,ij(x, y)] , (S17a)

Qij(x, y ±∆y) = Qij(x, y ∓∆y)− 4∆y
W

K
[Qij(x, y)−Q0,ij(x, y)] . (S17b)

The tensor Q0,ij is evaluated via Eq. (18) in the main text using the local orientation of the cell edge.
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2) If a given lattice point is linked to ghost points in both the x− and y−directions, we evaluate equation (S17) for
both directions independently as explained in the previous paragraph.

3) If a given lattice point is linked to two ghost points in either the x− or y−direction, we employ a forward or
backward finite difference approximation for the first spatial derivative of Qij to evaluate Qij at the ghost points.
This yields:

Qij(x±∆x, y) = Qij(x, y)− 2∆x
W

K
[Qij(x, y)−Q0,ij(x, y)] , (S18a)

Qij(x, y ±∆y) = Qij(x, y)− 2∆y
W

K
[Qij(x, y)−Q0,ij(x, y)] . (S18b)

Finally, if the given lattice point is also linked to a ghost point on the other axis, this is evaluated independently using
Eq. (S17).
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V. SUPPORTING FIGURES
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FIG. S2. Configurations of cells whose adhesion sites are located at the vertices of a square. The thick black line represents
the cell boundary, the black lines in the interior of the cells represent the orientation field n = (cos θSF, sin θSF) of the stress
fibers and the background color indicates the local nematic order parameter S. The area averages of the order parameter S
are given, from left to right, by: 0.74; 0.76; 0.80 (top row), 0.90; 0.91; 0.92 (middle row), and 1.0; 1.0; 1.0 (bottom row). On the
vertical axis the anchoring number An = WR/K is varied (An = 0, 1, 10, with R the length of the square side) and on the
horizontal axis the ratio between the isotropic bulk stress σ and the directed bulk stress α0 ((σd/λmin = 1, α0d/λmin = 0),
(σd/λmin = 0.5, α0d/λmin = 1), and (σd/λmin = 0, α0d/λmin = 2), while λmin is constant, and with d equal to the square side.
The ratios λmin∆t/(ξtR

2) = 2.8 ·10−6 and K∆t/(ξrR
2) = 2.8 ·10−6, and the parameters δ = 0.15R, Narc = 20, and ∆x = R/19

are the same for all cells. The number of iterations is 5.5 · 105.
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FIG. S3. Effect of the aspect ratio, ranging from 1 to 4, of the cell on cytoskeletal organization for cells, whose four adhesion
sites are located at the vertices of rectangles with the same area A. The thick black line represents the cell boundary, the black
lines in the interior of the cells represent the orientation field n = (cos θSF, sin θSF) of the stress fibers and the background
color indicates the local nematic order parameter S. The area averages of the order parameter S are given, from left to right,
by: 0.92; 0.95; 0.96. The simulations shown are performed with An = WR/K equal to 1, 0.67, and 0.5 respectively, where R
is equal to the short side of the rectangle, and Co = σd/λmin equal to 0.125, 0.1875, and 0.25 respectively, where d is equal
to the long side of the rectangle. The ratios σ/(σ + α0) = 1/9, λmin∆t/(ξtA) = 2.8 · 10−6, and K∆t/(ξrA) = 2.8 · 10−6, and
the parameters δ = 0.15R and ∆x = R/19 are the same for all cells. Narc = 20, 30, 40 from left to right and the number of
iterations is 5.5 · 105.
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FIG. S4. Configurations of cells whose adhesion sites are located at the vertices of a rectangle of aspect ratio 2. The thick black
line represents the cell boundary, the black lines in the interior of the cells represent the orientation field n = (cos θSF, sin θSF)
of the stress fibers and the background color indicates the local nematic order parameter S. The area averages of the order
parameter S are given, from left to right, by: 0.88; 0.86; 0.87 (top row), 0.97; 0.96; 0.96 (middle row), and 1.0; 1.0; 1.0 (bottom
row). The vertical axis corresponds to the anchoring number An = WR/K and the horizontal axis to the contractility number
Co = σd/λmin. The cells shown correspond to values of An = 0, 1, 10 and Co = 0, 0.25, 0.50, with R the short side of the rectangle
and d the long side of the rectangle. The ratios σ/(σ + α0) = 1/9, λmin∆t/(ξtR

2) = 2.8 · 10−6, and K∆t/(ξrR
2) = 2.8 · 10−6,

and the parameters δ = 0.15R, Narc = 40, and ∆x = R/19 are the same for all cells. The number of iterations is 5.5 · 105.
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FIG. S5. Configurations of cells whose adhesion sites are located at the vertices of a rectangle of aspect ratio 2. The thick black
line represents the cell boundary, the black lines in the interior of the cells represent the orientation field n = (cos θSF, sin θSF)
of the stress fibers and the background color indicates the local nematic order parameter S. The area averages of the order
parameter S are given, from left to right, by: 0.84; 0.85; 0.87 (top row), 0.94; 0.96; 0.96 (middle row), and 1.0; 1.0; 1.0 (bottom
row). On the vertical axis the anchoring number An = WR/K is varied (An = 0, 1, 10, with R the short side of the rectangle) and
on the horizontal axis the ratio between the isotropic bulk stress σ and the directed bulk stress α0 ((σd/λmin = 1, α0d/λmin = 0),
(σd/λmin = 0.5, α0d/λmin = 1), and (σd/λmin = 0, α0d/λmin = 2), while λmin is constant, and with d equal to the long side of
the rectangle. The ratios λmin∆t/(ξtR

2) = 2.8 · 10−6 and K∆t/(ξrR
2) = 2.8 · 10−6, and the parameters δ = 0.15R, Narc = 40,

and ∆x = R/19 are the same for all cells. The number of iterations is 5.5 · 105.



10

0

0.1

0.2

0.3

R
e
si
d
u
a
l

0 2 4 6

Anchoring Number An

FIG. S6. Residual function ∆2, defined in Eq. (34) in the main text, as a function of the anchoring number An (Eq. 33) for
the cells displayed in Fig. 8A-E, which correspond to the magenta, red, blue, grey, and purple data respectively. The minima
are given by ∆2 = 0.016; 0.058; 0.057; 0.034; 0.037 for the cells displayed in Fig. 8A-E, at values of An = 4.4; 4.1; 19; 4.6; 4.7,
where R = 17.3; 24.4; 39.9; 24.9; 25.3 µm is defined as the square root of the cell area. These An values correspond to K/W =
3.9; 5.9; 2.1; 5.4; 5.4 µm. Error bars display the standard deviation obtained using jackknife resampling. For large An values
the residual flattens for all cells, indicating that the actual value of An becomes unimportant once the anchoring torques (with
magnitude W ), which determine the tangential alignment of the stress fibers in the cell’s periphery, outcompete the bulk elastic
torques (with magnitude K).
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