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1 Derivation of Equation (38a,b)

Before diving into the derivation, we state the Gauss and Weingarten formulae

 (Gauss formula) (S1a)b
  




  

g g n

 (Weingarten formula) (S1b), b b 
      n g g

where  is the Christoffel symbols.  The surface gradient of a surface vector field  is  
 q

q g
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where we have used (S1a).  The term inside the curly bracket is, by definition, the surface covariant derivative of 
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The surface divergence of  is q
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For a 2D tensor field , the surface divergence is: Q
  Q g g
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The first term in the surface equilibrium equation can be written as

(S6) s s s s s sb m b m      
                   σ b m g g g g g g g g

Using (S5a,b), the surface divergence of this term is
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where we have used the fact that ,  and are symmetric tensors.  The second term in the surface equilibrium sσ sm b

equation can be expressed as
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Hence, its surface divergence is 
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where we have used the symmetry of  and (S1b).  The LHS of the surface equilibrium equation issm

, (S10)     33 3
   

  
  σ n n g

Combining (S7)-(S9) and separating the components in the tangent space from the normal direction, we obtain

the equilibrium equation in component form:
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2. Derivation of Equation (42a,b)

In plane strain problem, we parameterize any curve by its arc length s; the arc length parameterization 

introduces a unit tangent vector, i.e., .  is a constant unit vector out-of-plane. Therefore, we have1 g s 2 g v

, , , (S12)1,1 hg n 1,2 0g 2,1 0g 2,2 0g

where h is the in-plane curvature. By Gauss Formula, it is evident that all Christoffel symbols are zero indicating 

that covariant differentiation  is equal to . Further, since all the quantities of  are irrelevant with |Q
 ,Q

 Q

the out-of-plane direction and , the only non-trivial term is . Therefore, equation (38a,b) 12 21 0Q Q  11
,1Q

reduces to (40a,b).

3. Derivation of Equation (29a)

Consider the surface Helmholtz free energy without surface bending in equation (20), i.e.,

. (S13)       23
1 1 1 2, 2 1 1

2
s s
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The surface stress, by equation (19c), is then
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Within the scope of small strain linear elasticity, 
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where  is the components of the surface strain tensor. Substituting (S15) into (S14) yields
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Write (S16a) in the indicial form

. (S16b)   1 3 1 1 24 2 2a a a a a            

As illustrated in the manuscript that surface residual stress is , surface shear modulus is  0 1 22a a   12sG a

and surface bulk modulus is , we recover the Shuttleworth equation,3sK a

(S17)  02 s s sG K G            

4. Derivation of Equations (45) and (46a,b)

The bulk deformation gradient tensor is

. (S18)r r
dr r
dR R     F e e e e

Incompressibility implies 

. (S19) det 1dr r
dR R

 F

Solving equation (S19) with the boundary condition  gives
A

AR R
r r




. (S20)  2 2 2
A Ar R R r R  

Equation (S20) implies that the inner and outer radii before and after deformation satisfies

. (S21)2 2 2 2
B B A Ar R r R  

The Cauchy (true) stress tensor for neo-Hookean material is related to the deformation gradient by

, (S22)Tp   σ I FF

or in indicial form (with respect to the basis ) ,r e e

,   , (S23a,b)
2

rr
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where  is the Lagrange multiplier to enforce incompressibility, and  is the 3D identity tensor. Radial p I

equilibrium in the bulk yields

. (S24)0rrrrd
dr r
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Substituting (S23a, b) into (S24) gives 

. (S25)
2

3 2 0rrd R r
dr r R
    

To solve (S25) we replace  by , and the solution isR 2 2 2
A Ar r R 

, (S26)
2 2 2

2 2 2
12 2ln

2
A A

rr A A
r r R r r R C

r r


   
     

  

where  is an unknown constant. Using (S23a,b),  at the outer and inner radii of the deformed shell are:1C rr
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,  are the unit tangent and normal vectors for the inner surface, and , . The surface deformation s n s e r n e

gradient tensor on the inner surface is

, (S28)s A A      F s s e e

where  is the surface stretch ratio of the inner surface, i.e., . The in-plane curvature at  is A /A A Ar R  Ar r

, 1/ Ah r
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Similarly, the surface stretch ratio at outer surface ( ) is  and the trace of the relative curvature Br r /B B Br R 
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The in-plane surface stress and in-plane surface bending moment are given by the constitutive model; for the 

case of plane strain, they are

. (S30a-d)
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The equilibrium equations become
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, (S31a) 
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where we have used the fact that the jump in stress across the outer and inner surface are  and 
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Using (S27a,b) and (S31a,b), the relationship between the applied pressure  and surface stretch ratios , T A
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By normalization and using equation (S32)
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For given normalized pressure , initial geometry , and surface properties , , , we solve for  T f 0 sE
sD A

numerically. Once  has been determined, the normalized constant  can be obtained by equilibrium A 1 1 /C C 

at the inner surface, i.e., 
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4. Derivations of Equations (51a-c) and (52a,b)

The bulk deformation gradient tensor is2

. (S36)1
1 2

1

2
2 r

X
X 



   F e E e E

By equations (S22) and (S24), it gives

, (S37)
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where  is an unknow to be determined.2C

The surface deformation gradient is not easy to obtain intuitively compared to our first example. Therefore, 

we compute it following the standard recipe in Section 2. We first parametrize the inner surface in the reference 

configuration by  which is mapped into  in the current  2,Ac XR 2 22 cos , 2 sinA A
X Xc c 
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configuration. The curvilinear coordinate is . Hence,2X

, , (S38a,b) 1 20,1 G E  1
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The surface deformation gradient tensor at the inner surface is
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Therefore, the surface stretch ratio  at . The non-vanishing component second fundamental form 2 A
A

c
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 in the basis  is 11b 1 1g g
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. (S41)1 121 1 1
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Next, we compute the relative curvature tensor,
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And . Similarly, at , the stretch ratio of the surface is , and .3
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The equilibrium at the surfaces are
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Therefore, the system of equations determines  and  for given  and . It must be solved numerically.  2C Ac Bc

Once  and  are determined we compute the applied moment at the end of the plate; it is 2C
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where we have used the boundary conditions and integrate the radical equilibrium by part. The applied moment 

is equal to
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Using normalization and combining equations (S43a,b) lead to
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Equation (S46) allows us to solve for  numerically. Then we find  by 2C
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The normalized radical and circumferential stresses are

. (S48a,b)
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The normalized applied moment and normalized average in-plane curvature are
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