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1 Derivation of Equation (38a,b)

Before diving into the derivation, we state the Gauss and Weingarten formulae
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where I/, is the Christoffel symbols. The surface gradient of a surface vector field q = g“g,, is
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where we have used (S1a). The term inside the curly bracket is, by definition, the surface covariant derivative of
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The surface divergence of q is
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For a 2D tensor field Q = 0¥g, ®g 4 » the surface divergence is:
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The first term in the surface equilibrium equation can be written as
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Using (S5a,b), the surface divergence of this term is
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where we have used the fact that 6, m_ and b are symmetric tensors. The second term in the surface equilibrium

equation can be expressed as
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Hence, its surface divergence is
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where we have used the symmetry of m, and (S1b). The LHS of the surface equilibrium equation is
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Combining (S7)-(S9) and separating the components in the tangent space from the normal direction, we obtain

the equilibrium equation in component form:
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2. Derivation of Equation (42a,b)
In plane strain problem, we parameterize any curve by its arc length s; the arc length parameterization
introduces a unit tangent vector, i.e., g =s. g, =V is a constant unit vector out-of-plane. Therefore, we have
gl,lzhna gl,zzoa gz’l:(), g2,2=0 (S12)
where / is the in-plane curvature. By Gauss Formula, it is evident that all Christoffel symbols are zero indicating
that covariant differentiation Q“”f , 18 equal to Q“’f , - Further, since all the quantities of O are irrelevant with

the out-of-plane direction and Q"> =Q* =0, the only non-trivial term is Q" |. Therefore, equation (38a,b)

reduces to (40a,b).

3. Derivation of Equation (29a)

Consider the surface Helmholtz free energy without surface bending in equation (20), i.e.,
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The surface stress, by equation (19c¢), is then
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Within the scope of small strain linear elasticity,
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where ¢, is the components of the surface strain tensor. Substituting (S15) into (S14) yields
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Write (S16a) in the indicial form
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As illustrated in the manuscript that surface residual stress is o, = 2a, +a,, surface shear modulus is G, = 2g,

and surface bulk modulus is K = a,, we recover the Shuttleworth equation,
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4. Derivation of Equations (45) and (46a,b)

The bulk deformation gradient tensor is
dr r
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Incompressibility implies

det(F)=3—;%=1. (S19)

Solving equation (S19) with the boundary condition r|,_  =r, gives

r(R)=yR*+r;—R; . (S20)
Equation (S20) implies that the inner and outer radii before and after deformation satisfies
rs—R.=1-R.. (S21)
The Cauchy (true) stress tensor for neo-Hookean material is related to the deformation gradient by
6 =-pl+uFF", (S22)

or in indicial form (with respect to the basis {e e, })
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where p is the Lagrange multiplier to enforce incompressibility, and I is the 3D identity tensor. Radial

equilibrium in the bulk yields
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Substituting (S23a, b) into (S24) gives
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To solve (S25) we replace R by +/#> —r; + R’ , and the solution is
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where C, is an unknown constant. Using (S23a,b), o, at the outer and inner radii of the deformed shell are:
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s, n are the unit tangent and normal vectors for the inner surface, and s =e,, n =—e, . The surface deformation

gradient tensor on the inner surface is
F =15®s=1.e,Q¢,, (S28)
where A, is the surface stretch ratio of the inner surface, i.e., A, =r,/R,. The in-plane curvature at » =r, is

h=1/r,,
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Similarly, the surface stretch ratio at outer surface (r =7, ) is A, =,/ R, and the trace of the relative curvature

=, /7.
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The in-plane surface stress and in-plane surface bending moment are given by the constitutive model; for the

case of plane strain, they are
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The equilibrium equations become



A_ L

00+E:(/13—1)+/1ADS[FB z g_

j ! +to,|_ =0,

]i +(—T—0,4,

AL

o, +E; (4, —1)+AADS[FA 3

I"A_

, respectively.

_T - O-rr

r=

Ay 18
r=£ 2lnﬁ+iz—i2 L o, +E; (4,-1)+D,
4, A2 22| AR, R

B

where we have used the fact that the jump in stress across the outer and inner surface are o
Using (S27a,b) and (S31a,b), the relationship between the applied pressure 7' and surface stretch ratios 4,,
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By normalization and using equation (S32)
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For given normalized pressure T , initial geometry £, and surface properties &,, £, D,, we solve for A,

numerically. Once A, has been determined, the normalized constant C, = C, / u can be obtained by equilibrium
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at the inner surface, i.e.,
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The normalized stress &, and &, are given by
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4. Derivations of Equations (51a-c) and (52a,b)

The bulk deformation gradient tensor is?

F= /%e},®E1+ /%%@Ez. (S36)
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By equations (S22) and (S24), it gives
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where C, is an unknow to be determined.

The surface deformation gradient is not easy to obtain intuitively compared to our first example. Therefore,

we compute it following the standard recipe in Section 2. We first parametrize the inner surface in the reference
. o : X, X,
configuration by R=(c,, X,) which is mapped into r=|.27c, cos—%,/2nc,sin—=| in the current
n n
configuration. The curvilinear coordinate is X, . Hence,
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The surface deformation gradient tensor at the inner surface is
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Therefore, the surface stretch ratio 4, = /—A at » =r, . The non-vanishing component second fundamental form
n

by, in the basis g' ®g' is
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Express it in the basis s ®s,
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Next, we compute the relative curvature tensor,

KE—FST-b-FS:% /%&@Ez. (S42)
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And I] =— Cu Similarly, at r = r,, the stretch ratio of the surface is 4, = /ﬁ ,and I; =— /&.
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The equilibrium at the surfaces are
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Therefore, the system of equations determines 7 and C, for given ¢, and c,. It must be solved numerically.

Once 7 and C, are determined we compute the applied moment at the end of the plate; it is
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where we have used the boundary conditions and integrate the radical equilibrium by part. The applied moment

is equal to
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Using normalization and combining equations (S43a,b) lead to
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Equation (S46) allows us to solve for 77 numerically. Then we find 52 by
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The normalized radical and circumferential stresses are
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The normalized applied moment and normalized average in-plane curvature are
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