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1 Interaction Potential with Higher Order Modes

Here we derive a more general expression for the interaction potential of two particles, A and B, separated
by distance rAB , interacting on a curved interface in the limit of small slope. We will derive the local
description of the host interface with higher order terms and express the particle-sourced disturbance owing
to the pinned, undulated contact line in terms of a multipole expansion. With these two expressions and
using the method of reflections, we will find the interaction potential of two particles on a curved interface
with higher order modes. The definitions for βi, αi, Hm, Rm, ψ, and Li remain the same.

We first find an expression for the local shape of the host interface around the center of particle A. The
interface shape in a region sufficiently close to the circular post is well approximated by:

h(L) = Hm −Rmtanψ ln

(
L

Rm

)
. (1.1)

In the limit of λ = a
LA

< 1, we expand the above equation in a Taylor series expansion at (LA, βA). We
perform a coordinate transformation using the following relationships between the global coordinate (X,Y )
and the local particle coordinate (xp, yp),

L2 = X2 + Y 2 (1.2)

X = LAcosβA + xp (1.3)

Y = LAsinβA + yp. (1.4)

The logarithmic part in (1.1) can be expanded as,

ln

(
L

Rm

)
=

1

2
ln

(
L2

R2
m

)
=

1

2
ln(L2)− 1

2
ln(R2

m). (1.5)

By using the coordinate transformations and scaling variables with a, the first term becomes:

ln(L2) = ln(L2
A) + ln(1 + 2λ(x̃p cosβA + ỹp sinβA) + λ2(x̃2

p + ỹ2
p)). (1.6)

Since λ is small we can expand the second ln term in a power series up to powers of λ3. After some algebraic
manipulation and casting variables in polar coordinates we obtain:

ln(L2) = ln(L2
A) + 2λr̃A cos(φA − βA)− λ2r̃A

2 cos 2(φA − βA) +
2

3
λ3r̃A

3 cos 3(φA − βA). (1.7)

Substituting the above equation in the dimensionless form of equation (1.1) and using Equation (1.5), the
dimensionless interface profile is:
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˜h(rA, φA) = H̃m − R̃mtanψ

(
1

2

L2
A

R2
m

+ λr̃A cos(φA − βA)− 1

2
λ2r̃A

2 cos 2(φA − βA) +
1

3
λ3r̃A

3 cos 3(φA − βA)

)
.

(1.8)

The first term inside the parentheses is the change in local interface height from the neighbor. Absent body
forces, the particle changes the height of its center of mass to this new reference plane. The second term
is a change in slope. Absent body torques, the particle rotates tangent to this surface to eliminate such a
dipolar distortion. The final terms are leading order terms and they survive. Therefore,

˜h(rA, φA) = R̃mtanψ

(
1

2
λ2r̃A

2 cos 2(φA − βA)− 1

3
λ3r̃A

3 cos 3(φA − βA)

)
. (1.9)

Noting that ∆CAo = 2Rmtanψ
L2

A
, the disturbance created by the host interface around the particle in dimensional

form is:

hAhost(rA, φA) =
∆CAo

4
r2
A cos 2(φA − βA)− 1

6

∆CAo
LA

r3 cos 3(φA − βA). (1.10)

A spherical particle on the fluid interface disturbs the interface height owing to its pinned undulated contact
line. This particle-sourced disturbance can be expressed as,

hAp (rA, φA) = h2A
a2

r2
A

cos 2(φA − α2A) + h3A
a3

r3
A

cos 3(φA − α3A), (1.11)

where the subscripts 2, and 3 refer to the mode of deformation, i.e. quadrupolar and hexapolar modes, and
αn is the phase angle for mode n. The solution to the shape of the interface around particle A in the absence
of B on the curved interface is the sum of the following contributions:

hAiso(rA, φA) = hAp (rA, φA) + hAhost(rA, φA) + hAind,host(rA, φA), (1.12)

where hAind,host(rA, φA) = −∆Co
Aa2

4r2A
cos 2(φA − βA)+ 1

6
∆Co

Aa3

LAr3A
cos 3(φA − βA) is the distortion in the interface

that enforces the contact line boundary condition. However, if A and B are near each other they change
the shape of the interface in each other’s vicinity. The disturbance created by B near A can be found by
expanding the disturbances made by particle B around the center of A in a Taylor series. Like before we are
only interested in the curvature field created by particle B near A and higher order distortions since lower
order terms cannot persist. Thus the disturbance is given by:

hBatA = 3a2 h2B

r4
AB

r2
A cos 2(φA + α2B)− 3∆CBo

4

a4

r4
AB

rA
2 cos 2(φA + βB)

− 10a3 h3B

r6
AB

r3
A cos 3(φA + α3B)− 5

3

∆CBo
LB

a6

r6
AB

rA
3 cos 3(φA + βB). (1.13)

We can now solve for the height of the interface around particle A owing to this curvature field and higher
order disturbances by solving the Laplace equation subject to these two boundary conditions:

hA(rA = a, φA) = h2A cos 2(φA − α2A) + h3A cos 3(φA − α3A) (1.14)
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lim
rA→∞

hA(rA, φA) = hAhost + hBatA. (1.15)

The solution to the height is composed by summing the following heights:

hA(rA, φA) = hAp + hAhost + hBatA + hAind,host + hind,BatA, (1.16)

where

hAind,host = −∆CAo
4

a4

r2
A

cos 2(φA − βA) +
∆CAo
6LA

a6

r3
A

cos 3(φA − βA) (1.17)

hind,BatA = −3a2 h2B

r4
AB

a4

rA2
cos 2(φA + α2B) +

3∆CBo
4

a4

r4
AB

a4

rA2
cos 2(φA + βB)

+ 10a3 h3B

rAB6

a6

rA3
cos 3(φA + α3B) +

5

3

∆CBo
LB

a6

rAB6

a6

rA3
cos 3(φA + βB). (1.18)

By calculating the change in free energy, ∆E, subtracting curvature indenpendent terms, and repeating the
same calculations for particle B in the vicinity of A, the net interaction energy is:

Enet,hex
γπa2

=
∆CAo

2

[
− h2A cos(2(βA − α2A)) +

a

LA
h3A cos(3(βA − α3A))

]
+

∆CBo
2

[
− h2B cos(2(βB − α2B)) +

a

LB
h3B cos(3(βB − α3B))

]
+

a2

r4
AB

[
− 12h2Ah2B cos(2(α2A + α2B)) + 60h3Ah3B

a2

r2
AB

cos(3(α3A + α3B))

]
+

∆CBo a
4

2r4
AB

[
3h2A cos(2(α2A + βB)) + 10h3A

a3

r2
ABLB

cos(3(α3A + βB))

]
+

∆CAo a
4

2r4
AB

[
3h2B cos(2(α2B + βA)) + 10h3B

a3

r2
ABLA

cos(3(α3B + βA))

]
. (1.19)
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2 Particle Dynamics

Here we present other set of pairs interacting on the curved interface and their respective dynamics. The
L versus t plots show a comparison between theoretical predictions using Equation 12 versus observed
trajectory. The pair in Figure S1 show the same behavior as the one described in the main text where both
particles are migrating uphill and then at some distance particle A reverses direction to form a pair with
B. However for the pairs in Fig.S2 the trajectory shows particle A reversing back to form a pair. This is
due to particles with similar quadrupolar magnitudes being at close proximity at further distances from the
post compare to the first case. For all cases the magnitude of the quadrupolar distortions is the sole free
parameters fit in this comparison.

Figure S1: Pair #1 (a) Time stamped image of two particles migrating toward the post and forming a dimer
(t = 0s, t = 2.6s, t = 5.20s) on the curved interface with ψ = 14o. (b) The trajectory of each particle in this
dimer (symbols) in terms of position with respect to the micropost L versus time t. Theory with best fit
amplitudes for quadrupolar distortions (solid lines). Inset : inter-particle distance rAB versus time t.

Figure S2: The trajectory (symbols) of each particle in the dimer shown underneath in terms of position
with respect to the micropost L versus time t on the curved interface with ψ = 12o. Theory with best fit
amplitudes for quadrupolar distortions (solid lines). Inset : inter-particle distance rAB versus time t. (a)
Pair #2 (t = 0s, t = 1.33s, t = 2.73s). (b) Pair #3 (t = 0s, t = 0.53s, t = 1.13s). Scale bar = 10 µm
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The following videos show 10 µm polystyrene particles interacting on the water-hexadecane curved interface
and forming a pair.

Video S1: Trajectory is shown in Fig.2(c-d). 1.5X Real Time. ψ = 12o

Video S2: Trajectory is shown in Fig.S1. 1.5X Real Time. ψ = 14o

Video S3: Trajectory is shown in Fig.S2(a). 1.5X Real Time. ψ = 12o

Video S4: Trajectory is shown in Fig.S2(b). 1.5X Real Time. ψ = 12o
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3 Isolated Particle on Curved Interface

Figure S3: (a) Trajectory of spheres around the cylindrical micropost - radial distance of the migrating
microsphere from the center of the post as function of time remaining until contact with the post. (b)
Comparison of predicted curvature capillary energy (solid line) against the extracted energy from experiment
for the trajectories (open circles).

The migration of polystyrene colloidal spheres with mean diameter of 2a = 10 µm and root mean squared
roughness of 15–40 nm on interfaces with slope 15–18o has been previously studied. Here we study some
isolated particles to show again how their behavior differs from pairs on the curved interface. Particle
trajectories (Fig.S3(a)) showed that spheres are propelled faster in the region closer to the post where the
magnitude of the deviatoric curvature was greater consistent with previous observations. Particles also move
along a radial path as expected since the capillary energy for the interaction between the particles and the

curvature field has no dependency on the azimuthal angle φ, EAiso = γπa2 hqpA∆Co
A

2 . Quantitatively we can
show that the energy dissipated along the particle trajectory agrees with that expected from theory. In the
limit of zero inertia the curvature capillary energy used to move particles is balanced by viscous dissipation.

The total energy can be extracted from the trajectories by integrating the drag force as, ∆E =
∫ Lf

Li
FdragdL,

where Li is the reference point and Lf is an arbitrary point along the trajectory. Plotting the energy
dissipated normalized by γπa2 against a∆Co shows that the relationship is linear as can be seen in Fig.S3(b).
The magnitude of the quadrupolar mode hqp inferred from these trajectories are consistent with values
previously reported (between 20− 130nm).

Video S5: 10 µm polystyrene particle migrating on the water-hexadecane curved interface. Respective
trajectory is shown in orange in Fig.S3(a). 1.5X Real Time. ψ = 12o

Video S6: 10 µm polystyrene particle migrating on the water-hexadecane curved interface. Respective
trajectory is shown in blue in Fig.S3(a). 1.5X Real Time. ψ = 12o

Video S7: 10 µm polystyrene particle migrating on the water-hexadecane curved interface. Respective
trajectory is shown in cyan in Fig.S3(a). 1.5X Real Time. ψ = 13o
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4 Exploring Pair Assembly through Force and Torque Calcula-
tions

Figure S4: (a) Capillary torque and (b) capillary force of particle A as a function of dimensionless inter-
particle distance, for a typical system with ψ = 15o, a = 5 µm, Rm = 125 µm, and hqpA = hqpB = 30
nm. Straight line corresponds to the capillary torque/force due to particle-curvature interactions. Curves
with open circles correspond to the capillary torque/force due to particle-particle interactions at different
distances from the post (L̃A = LA

a ).

The net capillary energy for particle i in the vicinity of particle j is given by:

Einet
γπa2

= −hqpi∆C
i
o

2
cos(2(βi − αi))−

6hqpihqpja
2

r4
ij

cos(2(αi + αj)) +
3hqpi∆C

j
oa

4

2r4
ij

cos(2(αi + βj)). (4.1)

Substituting for ∆Co
i and factoring out the isolated particle curvature migration term:

Einet
γπa2

=−Rm tanψ
hqpi
L2
i

cos(2(βi − αi))
[
1 +

{
6hqpj

Rm tanψ

L2
i a

2

r4
ij

cos(2(αi + αj))

cos(2(βi − αi))
− L2

i

L2
j

3a4

r4
ij

cos(2(αi + βj))

cos(2(βi − αi))

}]
.

(4.2)

For typical system parameters specified in the caption to Figure S4, we can compare the relative magnitudes
of the terms in curly brackets in Equation 4.2, i.e. for particle A, to determine at what inter-particle distance
the pair interaction wins over the isolated curvature interaction. For simplicity we will do this for an idealize
case in which particles are behind one another, rAB = LB − LA, initially with a random orientation of the
quadrupolar axes (inset in Figure S4). Let particle A be initially at a distance from the post anywhere
between LA = 200–500 µm, which is the region studied in experiment. Calculations show that rAB must be
approximately 10–13 µm for the terms in curly bracket to be comparable to one. This suggest that these
terms are near field and particles will dimerize once they are near each other depending on their position from
the post. Energy gradients as particles rotate at a fixed position on the interface generate capillary torques.
The curvature-related forces decay faster with distance from the micropost than do the curvature-related
torques. This shows to be key in determining particle alignment with respect to the curvature and nearby
particles even before migration occurs. The capillary torque for the capillary energy of A in the vicinity of B,
is equal to TcapA = ∂EA

∂αA
. We can calculate the torque experienced by A to rotate its quadrupolar axes from

the initial orientation. By splitting the torque in two parts, TisoA and TpairA, and normalizing by TisoA, we
compare their relative magnitudes. Fig.S4(a) shows this comparison at different distances from the post as
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we decrease the distance between A and B. Clearly the closer the particles are to the post the most near
contact they have to be to form mirror symmetric dimers without influence from the underlying curvature,
i.e. TpairA > TisoA. Otherwise TisoA wins and particles align with the curvature field. Energy gradients with
position generate capillary forces, Fcap, that bring particles together, FpairA, or propel them to regions of
high curvature gradients, FisoA, once they align. Fig.S4(b) shows a comparison at different distances from
the post between these two forces normalized by, FisoA, as the distance between A and B is decreased. It is
evident from this comparison that at a specific L location the closer the particles are the stronger the force
to pair formation. Thus as particles approach one another pair interaction starts becoming more and more
important, FpairA > FisoA, leading to the formation of dimers on the curved interface.

This analysis show that pair assembly is complex as the terms that dominate dimerization depend on
many parameters. Generally pairs of particles once adsorbed first experience a torque that either aligned
them with each other or the curvature field. Once align they migrate to sites of high curvature gradients or
form dimers.

5 Calculating Fractal Dimension

Figure S5: Fractals formed around the cylindrical micropost on the curved fluid interface. Particles on top
of the micropost are not in the fluid interface and are not considered as part of the structure.

In Fig.1(d) we present a fractal structure formed around the cylindrical micropost by a dense suspension
of polystyrene spheres interacting via capillary interactions. Other fractals formed around the cylindrical
micropost are shown in Fig.S5. These structures have fractal dimension ranging from 1.4–1.6. Here we
describe how we calculated fractal dimension for these fractals and how we compared this to simulated DLA
fractals.

The fractal structures were characterized by calculating their respective Hausdorff Dimension (popularly
fractal dimension). The Hausdorff dimension is an integer for sets of points that define smooth shapes in
traditional geometry, which agree with dimension in Euclidian space [1]. For other less simple objects like
fractals, based only on scaling properties, the Hausdorff dimension is a fraction. Fractal dimension is defined
in the following way:

D =
logN

log(1/s)
→ N = s−D, (5.1)

where N is the total number of segments needed to cover a perimeter of length L where each N segment
has length s. The fractal dimension of the structures were specifically calculated using the ”box counting”
method. In this technique boxes of different sizes are used to cover the 2D image of the fractal formed on
the interface. Information on the number of boxes needed to cover the image helps in constructing a log-log
plot from which the fractal dimension is obtained from the slope. There are many packages and software
that have built in algorithms for box counting including ImageJ, thus we have chosen to do our analysis with
the FRACLAC plugin. The boxes had length 5–315 pixels. Fig.S6(a) shows an example of this method and
the resulting fractal dimension for the fractal in Fig.1(d), D = 1.52.
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Figure S6: Fractal dimension analysis (a) Log-log plot of box number vs box size showing the fractal
dimension for fractal in Fig.1(e). Inset: schematic showing boxes covering the 2D fractal image. (b)
Simulated DLA fractal with circular seed region and 664 particles. (c) Fractal dimension D versus number
of particles N for fractals obtained through experiment and DLA simulations. (d) Angle distribution between
particle centers for simulated fractal in (b). Inset: schematic showing angle between particle centers used
for angle distribution calculations.

The fractal dimension obtained from the analysis of the different capillary fractals, D = 1.4–1.6, is lower
than that of the reference fractal dimension of 1.71 for a diffusive limited aggregation (DLA) structure. To
understand what influence curvature had on the topology of the fractal and its dimension, a DLA fractal
with a circular seed region (i.e. the post) was simulated (Fig.S6(b)). This was done by initializing the
circular seed at the origin and then releasing particles one at a time at some radius larger than the cluster
radius, allowing them to randomly walk until they touch and attached to an aggregate. If particles crossed a
killing radius much larger than the system size, they would be annihilated. This process was continued until
all the particles were attached or killed. Fig.S6(c) shows how the fractal dimension compares for different
number of particles. Results show that for a fractal with a seed region resembling the post and the same
number of particles as in experiments, the fractal dimension was closely the same. These results shows that
curvature does not have an influence on the topology of the fractal, however as explained in the main text,
the angle distribution between particle centers yields evidence of different mechanisms behind the formation
of these structures. Fig.S6(d) shows that important peaks demonstrating the importance of particle-particle
and particle-curvature interactions on the curved interface are absent in the DLA structure.

To explain why the fractal dimension was lower than 1.71 a larger fractal with ∼ 6000 particles was
simulated (Fig.S7(a)). The fractal dimension for this fractal came out to be ∼ 1.66, which is close to 1.71.
We suspected that the value was lower due to the seed being larger than the particles leading to larger
branch gaps. To confirm this, another fractal formed around a particle size seed was simulated (Fig.S7(b)).
In fact the fractal dimension for this fractal was 1.7180, pretty close to the established value. Therefore, we
were able to conclude that the lower value was due to discrete finite size effects for the smaller fractals.
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Figure S7: Simulated DLA fractals (a) Fractal formed around a seed region resembling the post, D =
1.6580. (b) Fractal formed around a particle size seed, D = 1.7180.

6 Structure Formation

When comparing the angle distribution in the clusters between experiments and MC simulations, we observe
very clear peaks in the simulations for 60o, 90o, and 180o, which are kind of blurred in the experiments.
In the main text we explained that likely sources of discrepancy between the observed and simulated angle
distributions are the inclusion of only the two leading order modes in the contact line undulation, and the
assumption of fixed amplitudes of these two modes on all particles. In simulations, the particle translation
is not restricted to a grid and can access all positional degrees of freedom for the interface. The value of
translational displacement ε is chosen from a uniform random number distribution such that −0.05µm ≤ ε ≤
0.05µm which is much smaller than the particle size of 5µm. Similarly, for the rotational displacement the
angular displacements are chosen such that −π/200 ≤ ε ≤ π/200. Hence we do not think the translational
or rotational step size would restrict the particle from exploring the configurational space.

Video S8: 10 µm polystyrene particle forming clusters on the water-hexadecane curved interface. 1.5X
Real Time. ψ = 15o

Video S9: Example of a cluster reorganizing. Particle within an L shape changes position in the cluster.
0.1X Real Time. ψ = 15o

Video S10: Monte Carlo simulation of 10 µm particles forming clusters around the cylindrical micropost.
ψ = 15o
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