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Figure S1: Particle size distributions of the three different types of silica nanoparticles (SNPs), used in the 
study, including a) 80 nm Rhodamine (RITC)-labeled SNPs; b) 100 nm RITC-labeled SNPs and c) 130 nm 
Fluorescein (FITC)-labeled SNPs, converted from the sedimentation coefficient distribution1 and 
measured by analytical ultracentrifugation (AUC). 

 

 

 

Figure S2: Particle size distributions of the three different types of silica nanoparticles (SNPs), used in the 
study, including a) 80 nm RITC-labeled SNPs; b) 100 nm RITC-labeled SNPs and c) 130 nm FITC-labeled 
SNPs, measured by Dynamic Light Scattering (Litesizer™ 500, Anton-Paar). The polydispersity index (PDI) 
of the three types of SNPs were 3.5%, 1.5% and 3.1% separately which indicated the high 
monodisperisty of the samples.  
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SI1: detailed AUC experiment set-up: 

In a typical sedimentation–diffusion equilibrium (SDE) experiment, a 10 μl sample of the binary 

nanoparticle dispersion at a typical initial concentration of 20 vol% was mixed well and injected into the 

sample channel of an AUC cell of 1.5 mm pathlength. A 20 µl solvent of 80 vol% glycerol + 20 vol% water 

was injected into the reference cell. The filled AUC cell was then placed into a custom-made Multi-

Wavelength Analytical Ultracentrifuge2-4 (MWL-AUC). The measurement settings were: Temperature 

25°C; Wavelength range 250–700 nm; Radial step size: 2 um. After a time scale of around 4 days, the 

sedimentation–diffusion equilibrium was normally reached by checking if the sedimentation profiles of 

the last 10 hours overlapped. 

 

SI2: detailed theoretical calculation steps:  

To calculate sedimentation-diffusion equilibrium (SDE) profiles in a mixture of charged, spherical 

particles at high volume fractions, we follow the general approach outlined in the literature5. Briefly, we 

consider a mixture of particles i = 1:M with hard cores diameters σi, mass densities ρi and total charge 

Qi=Zi e, with a (local) volume fraction ϕi(r) in a continuum fluid a mass density ρF. For every type of 

particle, the total potential can be written as the sum of its electrochemical potential, contribution due 

to the external (centrifugal) field, and the insertion potential against the total pressure:  

 

𝜇𝑖
𝑡𝑜𝑡 = 𝜇𝑖

𝑖𝑑 + 𝜇𝑖
𝑒𝑥𝑐 + 𝜇𝑖

𝑒𝑙 +  𝜇𝑖
𝑒𝑥𝑡 + 𝑣𝑖𝑃𝑡𝑜𝑡      

         = ln 𝜙𝑖 + 𝜇𝑖
𝑒𝑥𝑐 + 𝑄𝑖𝜓 +

𝑚𝑖𝜔2𝑟2

2
+ 𝑣𝑖(𝑃ℎ − Π)                                     (S1) 

 

where 𝜇𝑖
𝑖𝑑 + 𝜇𝑖

𝑒𝑥𝑐 is the chemical potential split into an ideal contribution 𝜇𝑖
𝑖𝑑 = ln 𝜙𝑖 and an excess 

contribution (for which very good empirical expressions exist, such as BMCSL for mixtures of hard 

spheres). 𝜇𝑖
𝑒𝑙 = 𝑄𝑖𝜓 = 𝑘𝐵𝑇𝑍𝑖𝑦  is the contribution due to the electrostatic potential of charged particles 

in a mean-field approximation (𝑄𝑖 = 𝑍𝑖𝑒 is the particle charge, and 𝑦 = 𝑒𝜓/𝑘𝐵𝑇 is the dimensionless 

electrostatic potential). 𝜇𝑖
𝑒𝑥𝑡 is the contribution due to an external field; in this section we will 

specifically consider a centrifugal field, hence, 𝜇𝑖
𝑒𝑥𝑡 = 𝑚𝑖𝜔2𝑟/2. Finally, 𝑣𝑖𝑃𝑡𝑜𝑡 is the insertion energy, 

required to insert a particle of type i against the total pressure.  

 

The expression for the total potential in Equation S1 can be written in terms of forces, by taking the 

derivative with respect to z (𝐹 = −𝜕𝜇𝑡𝑜𝑡/𝜕𝑟). The SDE profile of a particle can be found by requiring 

that the net force acting on the particle is 0 (which is an optimization of the total potential 𝜇𝑖
𝑡𝑜𝑡). The 

gradient of the hydrostatic pressure, 
𝜕𝑃ℎ

𝜕𝑟
 = −𝜌𝑠𝑢𝑠𝑝𝜔2𝑟,  and in SDE, 

𝜕Π

𝜕𝑟
= −𝜔2𝑟 (𝜌𝑠𝑢𝑠𝑝 − 𝜌𝐹). Hence, 

in SDE, the density difference between the particle and the fluid can be used to calculate the SDE 

profiles. 

 

After some rewriting, this gives for mixture of particles in a centrifugal field:  

 

 

                            
𝑟

𝐿ω,𝑖
2 = −

1

𝜙𝑖

𝜕𝜙𝑖

𝜕𝑟
− 𝛽 ∑

𝜕𝜇𝑖
𝑒𝑥𝑐

𝜕𝜙𝑗

𝜕𝜙𝑗

𝜕𝑟𝑗 +
𝜕𝑍𝑖

𝜕𝑟
𝑦 − 𝑍𝑖

𝜕𝑦

𝜕𝑟
                                                   (S2) 
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where 𝛽 = 1/𝑘𝐵𝑇 and 𝐿𝜔,𝑖 = √
𝑘𝐵𝑇

𝑣𝑖(𝜌𝑖−𝜌𝐹)𝜔2  is the centrifugal length. For particles with a fixed charge Zi, 

the term (𝜕𝑍𝑖/𝜕𝑟) equals 0.  

 

The mean-field electrostatic potential is related to the particle volume fraction via the condition of local 

electro-neutrality5:  

   

                                   ∑
𝑍𝑗𝜙𝑗

𝑣𝑗
𝑗 − 2𝑛𝑏(1 − �̃�) sinh 𝑦 = 0                                                                        (S3) 

            

where nb is the number density of monovalent ions in the bulk, and �̃� = ∑ 𝜙𝑗𝑗  is the total fraction of the 

volume occupied by particles at a particular position r. Note that we do not explicitly calculate the 

counterion concentration profiles across the SDE profiles, and thus, we do not account for the locally 

enhanced number densities of counterions in the sediments with very high volume fractions of particles. 

To do so, one would have to include an additional force balance for the ions and solve their 

concentration profile self-consistently with the SDE profiles of the colloids. We plan to address the 

contribution of this in a future contribution.  

 

Here, we assume that the all particles have a fixed charge Zi. For an explanation how to take into 

account charge regulation of the particle charge, we refer to the literature6. For the experimental 

profiles shown in the main text, we found that including a regulated surface charge does not 

substantially change the SDE profiles for the experimentally determined particle charges and fitted ionic 

strength.  

 

If all particles have a fixed charge, Equation S3 can be rewritten, leading to the following expression for 

the electrostatic potential y: 

 

                                        𝑦 = arcsinh (∑
𝑍𝑖𝜙𝑖

2𝑛𝑏𝑣𝑖(1−�̃�)𝑖 )                                                                  (S4) 

            

 

The derivative of the electrostatic potential that is included in Equation S2, can then be written as 

follows: 

 

                                        
𝜕𝑦

𝜕𝑟
=  

1

√𝛼2+(1−�̃�)
2

 ∑
𝜕𝜙𝑖

𝜕𝑟
(

𝑍𝑖

2𝑛𝑏𝑣𝑖
+

𝛼

(1−�̃�)
)𝑖                                            (S5) 

            

with 𝛼 = ∑
𝑍𝑗𝜙𝑗

2𝑛𝑏𝑣𝑗
𝑗 . To find the SDE profiles of all charged particles in a mixture, we insert Equation S5 in 

the force balance of Equation S2 and collect all derivatives of the concentration profiles, and write the 

set of equations in matrix form5: 
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                              − (
1/𝐿𝜔,1

2

1/𝐿𝜔,2
2

. .

) = (
𝜇11 𝜇12 . .
𝜇21 𝜇22 . .
. . . . . .

) (
𝜕𝜙1/𝑟𝜕𝑟
𝜕𝜙2/𝑟𝜕𝑟

. .

)                                           (S6) 

where:  

𝜇𝑖𝑗 = 𝜇𝑖𝑗
𝑖𝑑 + 𝜇𝑖𝑗

𝑒𝑥𝑐 + 𝜇𝑖𝑗
𝑒𝑙  

 

and: 

                         𝜇𝑖𝑖
𝑖𝑑 =

1

𝛷𝑖
    𝜇𝑖𝑖

𝑒𝑥𝑐 =
𝜕𝜇𝑖

𝑒𝑥𝑐

𝜕𝛷𝑖
      𝜇𝑖𝑖

𝑒𝑙 =
𝑍𝑖

2

2𝑛𝑏𝜈𝑖√𝛼2+(1−𝛷)2
+

𝑍𝑖𝛼

√𝛼2(1−𝛷)2+(1−𝛷)4
 

                          𝜇𝑖𝑗
𝑖𝑑 = 0    𝜇𝑖𝑗

𝑒𝑥𝑐 =
𝜕𝜇𝑖

𝑒𝑥𝑐

𝜕𝛷𝑗
      𝜇𝑖𝑗

𝑒𝑙 =
𝑍𝑖𝑍𝑗

2𝑛𝑏𝜈𝑗√𝛼2+(1−𝛷)2
+

𝑍𝑖𝛼

√𝛼2(1−𝛷)2+(1−𝛷)4
 

 

Hard-sphere excluded volume interactions can be included using the empirical BMCSL equation of state. 

The expression for 𝜇𝑖
𝑒𝑥𝑐and the analytical expression for the partial derivative (𝜇𝑖𝑗

𝑒𝑥𝑐 = 𝜕𝜇𝑖
𝑒𝑥𝑐/𝜕𝜙𝑗) can 

be found elsewhere5. 

 

For a two-component mixture, the expressions for 𝜕𝜙1/𝜕𝑟 and 𝜕𝜙2/𝜕𝑟 can be written explicitly:  

 
𝜕𝜙1

𝑟𝜕𝑟
=

𝜇12/𝐿𝜔,2
2   − 𝜇22/𝐿𝜔,1

2

 𝜇11𝜇22−𝜇12𝜇21
     

𝜕𝜙2

𝑟𝜕𝑟
=

𝜇21/𝐿𝜔,1
2   − 𝜇11/𝐿𝜔,2

2

𝜇11𝜇22−𝜇12𝜇21
 

 

We solve this set of equations numerically in Matlab using a finite difference scheme. The resulting 

profiles are shown in the main text as solid lines.   

 

In the theoretical calculations, the surface charges used for different SNPs are listed in Table S1. They 

can be experimentally estimated by using the Debye-Hückel approximation7. From the therotical 

calculations, the surface particle charge cannot be neutralized completely and there is always a small 

amount of charge left even after reacting with PEG-silane and being dispersed in acidic environment. 

The ionic strength used in the calculations (3 mM) is slightly higher than the experimental value (0.5 

mM). The deviation may due to the counter-ion accumulation with a higher particle concentration in the 

sedimentation.  

 

 

 
Table S1: The surface charge number Z used in the theoretical calculations.  
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Figure S3: Experimental SDE profiles for the binary mixture of 80 nm Polyethylene glycol (PEG) stabilized 
RITC-SNPs and 130 nm PEG stabilized FITC-SNPs at an ionic strength of 0.1M at 1100 rpm and 25 °C (the 
molecular weight of PEG is 1000 Da). At this high ionic strength, particles behave nearly like hard 
spheres. The maximum concentration reaches 54 vol% (130 nm SNPs) + 8 vol% (80 nm SNPs) at the very 
bottom. 

 

 

Figure S4: Experimental sedimentation-diffusion equilibrium (SDE) profiles for the binary mixture of 80 
nm RITC-SNPs and 130 nm FITC-SNPs at 1100 rpm and 25 °C of a) a varied number ratio: n(80 nm): n(130 
nm) = 1:2; b) a larger sample volume: 20 ul and c) a slightly higher ionic strength 5mM.  
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Table S2: The calculated values of 𝑟𝐿
2, 𝑟𝑆

2 and p for Figure S4 a, b and c.  

 

 

Table S3: The calculated values of 𝑟𝐿
2, 𝑟𝑆

2 and p for Figure 3. 

 

 

Table S4: The calculated values of 𝑟𝐿
2, 𝑟𝑆

2 and p for Figure 4 a and b. 
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SI3: Experimental steps for the introduction of amino groups for 130 nm SNPs:   

In a typical reaction, 5 µl (3-Aminopropyl)triethoxysilane (APTS) was diluted with 100 µl  

Tetrahydrofuran (THF). The as-prepared APTS solution was added to 360 µl PEG-stabilized 130 nm SNPs 

of ca. 6 mg/ml. The mixture was kept under 500 rpm stirring for 1.5 hours. Then the dispersion was 

purified by the centrifugation for 3 times and re-dispersed in the solvents of varied acidities.   

Aminopropyltriethoxysilane (purity ≥ 99%) and Tetrahydrofuran were purchased from Sigma-Aldrich. 

All chemicals were used without any further purification. 

 

 

Table S5: The zeta potential measurements (by LitesizerTM 500) for 80 nm sterically stabilized silica 
nanoparticles (s-SNPs) and 130 nm APTS functionalized, sterically stabilized silica nanoparticles (APTS-s-
SNPs) in different acidities, namely 0.01 M and 0.001 M HCl. 

 

 

Figure S5: The change of the p values with the pH value of the suspension. 
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