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Derivation of 𝚷𝐞𝐥 ≅ െ𝑮 for the generalized 8-chain model   

We assume the following generalized 8-chain model network for estimation of the single- 

and double-network gels, which is an expansion of the model proposed by Arruda and Boyce.S1 

This model network is an assemblage of cubic elements containing eight network strands from 

the centre to eight vertices at its relaxed state. We also assume the following things;  

1. affine deformation 

2. uniform strand length 

3. Helmholtz free energy due to elasticity of the network, 𝐹 ୪, is simply sum of that of the 

network strands, 𝐹ୡ୦ୟ୧୬. 

Note that we do not assume Gaussian chain statistics. In this section, relaxed (𝜆 ൌ 1), 

equilibrium swelling state is set as its reference state. The gel volume at the reference state is 

𝑉୰ୣ. Our purpose is to derive Πୣ୪ ≅ െ𝐺 of the model gel at its reference state (𝑉 ൌ 𝑉୰ୣ and 𝜆 ൌ

1). 

 

Stretching ratio of a network strand, 𝛬 , is defined as end-to-end distance of the strand at a 

state of interest divided by its reference state. Owing to the network configuration and the 

assumption 2, all the network strands show same stretching ratio, 𝛬 , at any state of deformation. 

This fact and the assumption 3 lead Eq. S1; 

𝐹 ୪ ൌ 𝑛𝐹ୡ୦ୟ୧୬ (S1) 

where 𝐹ୡ୦ୟ୧୬ is elastic free energy of the single network strand and n is number of elastically 

effective network strands in the network. As 𝐹ୡ୦ୟ୧୬ should be a function of 𝛬 and n should be 

constant, 𝐹 ୪ is also a function of 𝛬. We also define elastic energy density of the gel, W, as; 

𝑊 ൌ ிౢ

౨
ൌ 𝑛 ிౙ

౨
  (S2) 

W is also a function of 𝛬. 

 

Firstly, we consider free swelling of the network. Elastic pressure, Πୣ୪, is calculated by 

differentiation of Δ𝐹 ୪ by gel volume V;    

Πୣ୪ ൌ െ
డிౢ

డ
ൌ െ

డௐ

డሺ ౨⁄ ሻ
  (S3) 

As W is a function of 𝛬 and 𝛬 should be a function of 𝑉 𝑉୰ୣ⁄ , we can decompose Eq. S3 as;  

Πୣ୪ ൌ െ
డௐ

డ௸

డ௸

డሺ ౨⁄ ሻ
  (S4) 
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𝛬 is proportional to ሺ𝑉 𝑉୰ୣ⁄ ሻଵ/ଷ, which leads; 
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Subsequently, nominal stress, 𝜎, upon uniaxial deformation is calculated by differentiation of 

W by the macroscopic deformation ratio, 𝜆, as; 

𝜎 ൌ
డௐ

డఒ
 (S6) 

Eq. S6 can be decomposed like Eq. S3 as 

𝜎 ൌ డௐ

డ௸

డ௸

డఒ
  (S7) 

Considering the network configuration and volume incompressibility, we can derive the 

relationship between 𝛬 and 𝜆 upon uniaxial deformation as;    

𝛬 ൌ ටఒమାଶఒషభ

ଷ
  (S8a) 

డ௸
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ൌ

ఒିఒషమ

ඥଷሺఒమାଶఒషభሻ
 (S8b) 

Substitution of Eq. S8b to Eq. S7 gives; 

𝜎 ൌ
డௐ

డ௸

ఒିఒషమ

ඥଷሺఒమାଶఒషభሻ
  (S9) 

 

Here, we define shear modulus, G, as follows; 

𝐺 ൌ
ఙ

ఒିఒషమ  (S10a) 

𝜎 ൌ  𝐺ሺ𝜆 െ 𝜆ିଶሻ  (S10b) 

In general cases, G may depend on 𝜆. Since the first order Taylor series for 𝜆 െ 𝜆ିଶ at 𝜆 ൌ 1 is 

3ሺ𝜆 െ 1ሻ, Eq. S10b is approximated near 𝜆 ൌ 1 as  

𝜎 ൌ 3𝐺ሺ𝜆 െ 1ሻ ൌ 𝐸ሺ𝜆 െ 1ሻ  (S11) 

where 𝐸 ൌ 3𝐺 is Young’s modulus and what we measured by the mechanical tests.  

 

Substitution of Eq. S10b into S9 gives;  

𝐺ሺ𝜆 െ 𝜆ିଶሻ ൌ
డௐ

డ௸

ఒିఒషమ

ඥଷሺఒమାଶఒషభሻ
  (S12a) 
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𝐺 ൌ
డௐ

డ௸

ଵ

ඥଷሺఒమାଶఒషభሻ
  (S12b) 

Finally, Eqs. S5b and S12b are calculated under the conditions of the reference state (𝑉 ൌ

𝑉୰ୣ and 𝜆 ൌ 1); 

Πୣ୪|ୀ౨
ൌ െ
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 (S13a) 
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Thus, we obtain the desired relationship; 

Πୣ୪|ୀ౨
ൌ െ𝐺|ఒୀଵ (S14) 

 

By the way, it is well known that G is independent of 𝜆 for neo-Hookean solids assuming 

Gaussian chain model. Let us derive this relationship as a verification of the calculation. 

According to the Gaussian chain model, elastic energy per a single strand is given as;S2  

Δ𝐹ୡ୦ୟ୧୬ ൌ
ଷ்

ଶ
𝛬ଶ (S15) 

and the corresponding W and 
డௐ

డ௸
 are; 
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Substitution of Eqs. S16b and S8a into Eq. S12 gives;  

 𝐺 ൌ
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The obtained G is independent of 𝜆 and has well-known form, suggesting validity of our 

calculation.  
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Figure S1. (a) Compressional stress-deformation ratio curves of the PAMPS gels after swelling in 

the NaCl solutions. (b) Tensile stress-deformation ratio curves of the PAAm gels after swelling in 

the NaCl solutions. The curves of the PAMPS gels are cNaCl-dependent, whereas the curves of the 

PAAm gels are cNaCl-independent. 
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Figure S2. Effect of the parameter on the phase diagram shown in Figure 6(c); (a) 𝛼, (b) 𝜒ଵଶ, (c) 

𝜒ଵ௦, and (d) 𝜒ଶ௦. Unless mentioned in the figures, 𝛼, 𝜒ଵଶ, 𝜒ଵ௦, 𝜒ଶ௦ are set as 0.238, 0.016, 0.299 

and 0.433, respectively. The solid lines denote 𝜋୫୧୶ ൌ 𝜋୧୭୬. 
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Relationship between the toughening condition and the salt-insensitive condition of DN gels  

Previously we reported that the mechanical balance of the first and second networks is the 

key factor for toughening of the PAMPS/PAAm DN gels.S3 Briefly, the DN gels become ductile 

(tough) when strength of the second network exceeds that of the first network, which are 

basically determined by number concentrations of the elastically-effective strands of the two 

networks. This toughening condition of the DN gels (key factor: concentrations of the strands) is 

similar to their salt-insensitive condition shown in this paper (key factor: concentrations of the 

polymers). To discuss the relationship between these two conditions, we plotted the data of the 

DN gels with various first and second network concentrations on the phase diagram about salt-

sensitivity, as shown in Figure S3. These DN gels are classified into brittle and ductile groups 

based on their mechanical response, as shown in ref. S3. Interestingly, most of data of the brittle 

DN gels are in the salt-sensitive regime due to insufficient second network concentration, while 

data of the ductile DN gels are mainly in the salt-insensitive regime due to high second network 

concentration relative to the first network. However, the boundary for the brittle and ductile DN 

gels is not same as that for the salt-sensitive and salt-insensitive regimes. It means there is some 

relationship between the toughening and salt-sensitivity conditions, but there is no strong 

correlation between them. It is explained as follows. Salt-sensitivity of the DN gels is determined 

by concentration of the polymers.  On the other hand, toughening condition is determined by 

number concentrations of the strands, not directly by concentration of the polymers.  
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Figure S3. The relationship between the brittle-ductile transition condition of the DN gels and the 

salt sensitivity. The solid line denotes 𝜋୫୧୶ ൌ 𝜋୧୭୬. The data for brittle and ductile DNs are from 

ref. S3. Circle symbols denote 𝜋୫୧୶  𝜋୧୭୬ and cross symbols denote 𝜋୫୧୶ ൏ 𝜋୧୭୬.  
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