Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Active microfluidic transport in two-dimensional handlebodies

Jérôme Hardoüin, Justine Laurent, Teresa Lopez-Leon, J. Ignés-Mullol and Francesc Sagués

Supplementary Figures

Fig. S1 Particle Image Velocimetry of active flows confined in annuli. (a) Fluorescence micrograph of an active nematic confined in a 60 μ m annulus, with the corresponding velocity field overlaid in blue. The velocity field is averaged over 600 frames at 2 frames per second. The image is overlapped with a black mask around the region of interest, for a better visualization. (b) Tangential velocity u_t fitted with a Poiseuille-like velocity profile. The quadratic fit has the form $u_t = u_0 \cdot \tilde{r}(1 - \tilde{r})$. (c) Transport coefficient $q(t) = V_t/V$, for three different annulus widths. In the transport state (red line), the ratio remains close to 0.8. This is coherent with the average profiles described in Fig. 1 (d) showing that the radial component of the velocity is negligible. Furthermore, the time dependence is weak compared to the other signals: the ratio typically fluctuates about 0.82 ± 0.09 . In the switching state (green line), this ratio drops significantly, and the fluctuations are larger (0.31 ± 0.22) . Sometimes, the transport velocity changes sign, which attests for occasional flow reversals. Finally, in the turbulent state (blue line), the transport is almost negligible, with oscillations about 0.05 ± 0.2 . Note that, in the particular experiment displayed here, a large fluctuation is observed at time t = 160s, with the ratio shooting down to -0.6.

Fig. S2 Role of the average channel curvature. (a) Fluorescence micrographs of concentric annuli with the same width, $60 \ \mu m$, corresponding to the transport regime, and different inner radius, R_i . *Scale bar:* $100 \ \mu m$. The image is overlapped with a black mask around the region of interest, for a better visualization. (b) Corresponding intensity maps with the time-averaged absolute value of the azimuthal component of the velocity. Only values above $0.2 \ \mu \ s^{-1}$ are represented. (c) Mean azimuthal speed as a function of R_i .

Fig. S3 Distribution of defect orientations. Defect positions and orientations are computed with Matlab routines (see Methods). The orientations are then projected onto the azimutal direction θ . Statistics are obtained from a video of 600 frames at 2 frames/s. See Methods section. (a) Distribution of defect orientations in a 80 μ m wide annulus. (b) Average defect orientation as a function of the radial coordinate. Error bars correspond to the standard deviation of the measurements.

Fig. S4 Time distribution of the flow order parameter. Normalized frequency distribution (*f*) of the flow order parameter, \hat{S} , for active flow in annuli of width 60 μ m (a), 80 μ m (b), 110 μ m (c), and 200 μ m (d).

Fig. S5 Comparison between different order parameters. Different order parameters of active flows, averaged over time, as a function of the annulus width: tangential velocity, V_t , divided by the total speed, $V(\circ)$; flow order parameter, $\hat{S}(\Box)$; defect orientational order parameter, $P_{\theta}(\bigtriangleup)$.

Fig. S6 Wall-induced rectification in asymetric annuli. (a,e) Sketches of square annuli with asymetric outer boundaries. (b,f) Fluorescence micrographs of active nematics confined in asymetric square annuli. (e,g) Time-series of a pixel ring at the center of the annuli. (d,h) FFT computation of the times series (e,g) showing clockwise (resp. counter-clockwise) transport.

Supplementary Video Captions

Movie S1 Symmetry Breaking. Confocal fluorescence video of active nematics confined in a 60 μ m wide annulus. The image is overlapped with a black mask around the region of interest, for a better visualization. *scale bar:* 100 μ m.

Movie S2 Switching state. Confocal fluorescence video of active nematics confined in a $110 \ \mu m$ wide annulus. The image is overlapped with a black mask around the region of interest, for a better visualization. Scale bar: $100 \ \mu m$.

Movie S3 Turbulent state. Confocal fluorescence video of active nematics confined in a 200 μ m wide annulus. The image is overlapped with a black mask around the region of interest, for a better visualization. Scale bar: 100 μ m.

Movie S4 Synchronisation in a Genus 2. Confocal fluorescence video of active nematics confined in a genus 2 handle-body, with an overlapping distance of $D/2R_0 = 0.94$. The width of each annulus is $w = 80 \ \mu$ m. The image is overlapped with a black mask around the region of interest, for a better visualization. Scale bar: 100 μ m.

Movie S5 Frustration in a Genus 3. Confocal fluorescence video of active nematics confined in a genus 3 handle-body. The width of each annulus is $w = 80 \ \mu$ m and the overlapping distance is $D/2R_0 = 0.83$. The image is overlapped with a black mask around the region of interest, for a better visualization. Scale bar: 100 μ m.