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A. Free energies of block copolymer lamellae with FJC model
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Figure S1: Free energy calculated by SCMF simulation of AB diblock copolymers in bulk lamellar

phase (χN = 25, κN = 50, N = 14 and ∆L = 0.04R0) modeled by FJC at different N̄ and stiffness

parameter κbending. DCSCFT result of flexible FJC model is plotted with a gray line.
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B. Total density distribution of compressible homopolymer melts confined between

two neutral hard walls
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(b) DCSCFT
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Figure S2: (a) Ensemble-averaged total density of homopolymer melts near neutral hard wall (at

z = 0) calculated by SCMF simulation with flexible BS chain model of discrete N segments. (b)

The same plot obtained from DCSCFT calculation. The compressibility is very small for both

calculations, κN = 500.
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C. Self-consistent equations and free energy of FRI-DCSCFT

In this section, we present self-consistent equations and free energy expression of DCSCFT

adopting finite-range interaction (FRI) for compressible AB block copolymer melts. FRI be-

tween nonbonded segments can be incorporated in DCSCFT by modifying the Hamiltonian

for nonbonded interaction Hnb in eqn (4) as explained in section 3.2 in the main text.

With the modification of Hnb by eqn (29), the field theoretical transformation and saddle

point approximation are still straightforward, and the self-consistent field equations are given

as follows

wA(r) =
χN

2

∫
dRu(R) (φB(r−R)− φA(r−R))

+ κN

∫
dRu(R) (φA(r−R) + φB(r−R)− 1) (C1)

wB(r) =
χN

2

∫
dRu(R) (φA(r−R)− φB(r−R))

+ κN

∫
dRu(R) (φA(r−R) + φB(r−R)− 1) (C2)

After the self-consistent mean field solution is obtained, the free energy of the system is

calculated by

F

nkBT
=− ln

(
Q[wA, wB]

V

)
− χN

4V

∫
drdr′ (φA(r)− φB(r))u(r− r′) (φA(r′)− φB(r′))

+
κN

2V

∫
drdr′ (φA(r) + φB(r)− 1)u(r− r′) (φA(r′) + φB(r′)− 1)

− 1

V

∫
dr (wA(r)φA(r) + wB(r)φB(r)) (C3)
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D. Thermodynamic integration method

Free energy difference between disordered (χN = 0) and ordered lamellar phase (χN =

25) in the SCMF simulation is calculated via thermodynamic integration along the reversible

path connecting the two states, and in this section we present the details of the thermo-

dynamic integration which mostly follows the suggestion of Müller and Daoulas. [1] In this

method, ordering field is externally imposed along the reversible path, and the Hamiltonian

of the system includes an additional term

Hext

nkBT
= −λN

V

∫
drfext(r)φ̂(r) (D1)

where λN and fext(r) are the strength and spatial variation of external ordering field, re-

spectively, which linearly couples to the order parameter φ̂ ≡ (φ̂A − φ̂B)/2. Deriving the

self-consistent mean field solutions for this modified Hamiltonian, each field now includes

one additional term as follows,

wA(r) =
χN

2
(φB − φA) + κN(φA + φB − 1) + wext

A (D2)

wB(r) =
χN

2
(φA − φB) + κN(φA + φB − 1) + wext

B (D3)

where

wext
A (r) = −wext

B (r) =
−λNfext(r)

2
(D4)

In the thermodynamic integration method, reversible path is defined along the two lines

on χN -λN plane as shown in Fig. S3. In the first process, the disordered state (χN = 0)

gradually changes to predefined structure by increasing the parameter λN from 0 to 25

(green line in Fig. S3) while fixing fext(r) to be 2φ(r) obtained at χN = 25, which is the

natural way to generate the simulation results at χN = 25 by using external fields. The fields

acting on each type of segment in SCMF simulation are now quasi-instantaneously updated

using instantaneous densities and external fields. Eqns (26) and (27) are now modified by

ŵA,m =
χN

2
(φ̂B,m − φ̂A,m) + κN(φ̂A,m + φ̂B,m − 1) + wext

A,m (D5)

ŵB,m =
χN

2
(φ̂A,m − φ̂B,m) + κN(φ̂A,m + φ̂B,m − 1) + wext

B,m (D6)

where

wext
A,m = −wext

B,m = −λNφ̂final
m (D7)
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Figure S3: The reversible path adopted in thermodynamic integration scheme is illustrated on χN -

λN plane with snapshots of instantaneous A segment density of each state along the reversible

path.

and φ̂final
m is the instantaneous order parameter obtained at λN = 0 and χN = 25.

In the second process, external fields are gradually switched off while the second control

parameter χN now increases from 0 to 25 via linear path χN = 25− λN (blue line in Fig.

S3). The free energy difference between the disordered and final self-assembled phases can

be calculated by adding the free energy change for each branch. Since the free energy takes

the following form,

F = −kBT lnZ (D8)

Z ∝ 1

n!

∫ n∏
α=1

∏
s∈{0,∆s,··· ,1}

drα(s) exp

(
−Hb +Hnb +Hext

kBT

)
(D9)

the free energy change for the first and second branches are respectively,

∆F1

nkBT
= −

∫ 25

0

dλN

〈
∆Vm
V

Ncell∑
m=1

fext,mφ̂m

〉∣∣∣∣∣
χN=0

(D10)

∆F2

nkBT
= −

∫ 0

25

dλN

〈
∆Vm
V

Ncell∑
m=1

(
fext,mφ̂m − φ̂2

m

)〉
(D11)

Here, 〈 〉 is the ensemble average and the volume of mth cell ∆Vm is mostly ∆x∆y∆z, but
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factor 1/2 is multiplied if the grid point is at the neutral boundary. Throughout the paper,

we evaluate the integral eqns. (D10) and (D11) by finite difference method with ∆(λN) = 1,

after confirming that the free energy error at this step size is smaller than the accuracy

required for the free energy analysis in our study.
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E. Accuracy of stress calculation method
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Figure S4: Free energy of symmetric (f = 0.5) AB block copolymer lamellar phase (κN = 50)

at various χN calculated by SCMF simulation (N = 20, ∆L = 0.04R0 and N̄ 1/2 = 80000) as a

function of lamellar period. The period calculated by the stress calculation method is denoted by

a star in each curve.
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F. RNκbending
data for BS and FJC model
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Figure S5: RMS end-to-end distance RNκbending of the semiflexible BS and FJC model (N = 14) as

a function of chain stiffness parameter κbending. The expected FJC slope at small κbending is shown

on the graph as a guide.

For the semiflexible chain, the root-mean-square (RMS) end-to-end distance can only be

calculated numerically, but at least its deviation from R0 at small κbending can be analytically

estimated. For an FJC with N segments, there exists N − 1 bonds ∆rα(s) each with length

a. In the expansion of R2 = (
∑

s ∆rα(s))2, many complicated cross terms exist, but due

to the assumption that κbending is small, only the dot products of neighboring N − 2 pairs

of bond vectors provide the leading order correction term which is linear in κbending. Thus,

after making ensemble average, we obtain a simple formula,

〈
R2
〉 ∼= (N − 1)a2 + 2a2

N−2∑
i=1

〈cos θi〉 (F1)

where θi is the angle between two neighboring bond vectors as introduced in eqn (20) in the
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main text. At small κbending, each average can be estimated by

〈cos θi〉 =

∫
cos θi exp (−κbending (1− cos θi)) dΩ

/∫
exp (−κbending (1− cos θi)) dΩ

∼=
1

4π

∫
κbending cos2 θidΩ =

κbending

3
(F2)

Thus, 〈R2〉 ∼= (N − 1)a2 + 2κbending(N − 2)a2/3, and the RMS end-to-end distance in small

κbending limit is obtained as,

RN
κbending

∼= R0

[
1 +

N − 2

3(N − 1)
κbending

]
(F3)

The prefactor approaches to 1/3 in large N limit. At N = 14, the expected slope is 4/13 ∼=

0.307.
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