Supporting Information

Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity

Jingyi Li,^{‡a} Mingjie Zhu,^{‡a} Mengfan Wang,^{*,a,b,} Wei Qi,^{a,b,d} Rongxin Su,^{a,b,d} and Zhimin He^a

a. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. E-mail: mwang@tju.edu.cn

b. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China.

c. School of Medicine, Nankai University, Tianjin 300071, P. R. China

d. The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, P. R. China.

† Electronic Supplementary Information (ESI) available: 1. See DOI: 10.1039/x0xx00000x

[‡] These authors contributed equally to this work.

Fig. S1 The catalytic activities (a) and UV-vis spectrums (b) of histidine/hemin co-assemblies at different ratios.

Fig. S2 The plots of the initial reaction rate (*V*₀) versus ABTS concentration [S] in the reactions catalyzed by CA-H/Hemin, NIP-H/Hemin, MIP-H/Hemin, and MIP⁺-H/Hemin.

Fig. S3 The enzymatic reaction of TMB with the presence of H_2O_2 (a). Plots of $OD_{652 \text{ nm}}$ vs time for the oxidation reaction of TMB (b).

Fig.S4 The CD spectrums of SA-H, CA-H/Hemin, MIP-H/Hemin and MIP⁺-H/Hemin under 75 $^{\circ}$ C.

Catalyst	Substrate	$K_{\rm m}$ (mM)	V_{max} (mM • S ⁻¹)	$k_{\text{cat}}/K_{\text{m}} (\text{mM}^{-1} \cdot \text{S}^{-1})$	Reference
Fe ^{II} Fe ^{III} LDHNS	ABTS	0.68	7.194×10 ⁻⁵	-	1
PrussionBlue NPS	ABTS	157.45	8.475×10 ⁻⁶	2.69×10-6	2
WO _x QDs	ABTS	0.79	-	-	3
Pu39WT-hemin	ABTS	65.93	1.463×10 ⁻⁴	4.438×10 ⁻³	4
Co ²⁺ -Trp	ABTS	12.1	4.7×10 ⁻⁴	3.884×10-4	5
Ni/Co LDHs	ABTS	3.43	3.29×10 ⁻⁵	-	6
MgFe ₂ O ₄	ABTS	0.14	12.54×10 ⁻⁵	-	7
NiFe ₂ O ₄	ABTS	0.46	17.48×10 ⁻⁵	-	7
Au-Ni/g-C ₃ N ₄	ABTS	0.51	4.79×10 ⁻⁵	-	8
Au/g-C ₃ N ₄	ABTS	0.73	3.43×10 ⁻⁵	-	8
Ni/g-C ₃ N ₄	ABTS	0.96	2.4×10 ⁻⁵	-	8
CA-H/Hemin	ABTS	2.63	1.127×10-4	2.142×10 ⁻³	this work
NIP-H/Hemin	ABTS	2.32	1.335×10 ⁻⁴	2.874×10 ⁻³	this work
MIP-H/Hemin	ABTS	1.19	1.497×10 ⁻⁴	6.289×10 ⁻³	this work
MIP ⁺ -H/Hemin	ABTS	0.56	2.433×10-4	2.176×10 ⁻²	this work

 Table S1. Comparison of kinetic parameters of some POD-like catalysts

 Table S2. The Fe content in MIP+-H/Hemin after 6 cycles

	Sample (mg • L ⁻¹)	Fe (mg • L ⁻¹)	Fe content (%)
Initial	8.5	0.039	0.45
After 6	10	0.034	0.34
cycles			

References

- 1 K. Ponlakhet, P. Jarujamrus, M. Amatatongchai and S. Tamuang, *Analytical Methods*, 2019, 11, 4785-4794
- 2 W. Zhang, D. Ma and J. Du, *Talanta*, 2014, 120, 362-367
- 3 H. Peng, D. Lin, P. Liu, Y. Wu, S. Li, Y. Lei, W. Chen, Y. Chen, X. Lin, X. Xia and A. Liu, *Analytica chimica acta*, 2017, 992, 128-134
- 4 B. Liu, D. Li and H. Shang, *Chem Cent J*, 2014, 8,
- 5 Y. Guo, L. Xu and A. Liu, *Chem- Asian J*, 2020,
- 6 L. Su, X. Yu, W. Qin, W. Dong, C. Wu, Y. Zhang, G. Mao and S. Feng, *J Mater Chem B*, 2017, 5, 116-122
- 7 L. Su, W. Qin, H. Zhang, Z. U. Rahman, C. Ren, S. Ma and X. Chen, *Biosens Bioelectron*, 2015, 63, 384-391
- 8 G. Darabdhara, J. Bordoloi, P. Manna and M. R. Das, *Sensors and Actuators B: Chemical*, 2019, 285, 277-290