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Scaled governing equations

Before dropping the higher order terms, the scaled governing equations in the liquid are
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where Re = ρlUR0/ηl is the liquid Reynolds number.

In the solid, we have
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where Rem = (ρs/ρl)Re is a modified Reynolds number, G = ER0/σε
3 is a dimensionless

parameter quantifying the ratio of elastic forces to liquid-solid interfacial-tension forces and

m = ηs/ηl is the viscosity ratio between the solid and liquid phases.

At z = −H the boundary conditions are

ux = uz = 0, (7)
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vx = vz = 0. (8)

At the liquid-air interface z = ζ(x, t), the kinematic, normal stress, and tangential stress

boundary conditions are respectively given by
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where Z =
√

(1 + ε ∂ζ/∂x)2 and C−1
l = ε3σ/ηlU is a rescaled capillary number based on

the liquid-air interfacial tension. Note that due to our choice of characteristic velocity, the

magnitude of C−1
l is equal to unity.

At the liquid-solid interface z = ξ(x, t), the continuity-of-velocity, normal stress, and tan-

gential stress boundary conditions are respectively given by
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where Ξ =
√

(1 + ε ∂ξ/∂x)2 and C−1
s = ε3γ/ηlU is the rescaled capillary number based on

the liquid-solid interfacial tension. Substituting the characteristic velocity U = σε3/ηl leads to

C−1
s = γ/σ, which is a ratio of the liquid-solid and liquid-air interfacial tensions.

To obtain the leading-order equations, we assume ε→ 0 in equations (1)-(15). The leading-

order equations in the liquid are
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In the solid, we have
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At z = −H the boundary conditions are

ux = uz = 0, (22)

vx = vz = 0. (23)

At the liquid-air interface z = ζ(x, t), the kinematic, normal stress, and tangential stress

boundary conditions are respectively given by
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where pcap,l = −C−1
l (∂2ζ/∂x2) is the capillary pressure in the liquid.

At the liquid-solid interface z = ξ(x, t), the continuity-of-velocity, normal stress, and tan-

gential stress boundary conditions are respectively given by
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where pcap,s = −C−1
s (∂2ξ/∂x2) is a capillary-like pressure in the solid.
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