Supplementary Information for

A Thin-Film Model for Droplet Spreading on Soft Solid Substrates

Vasileios Charitatos¹ and Satish Kumar^{1,2} ¹Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA

Scaled governing equations

Before dropping the higher order terms, the scaled governing equations in the liquid are

$$\epsilon^2 Re \Big[\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_z \frac{\partial v_x}{\partial z} \Big] = -\frac{\partial p_l}{\partial x} + \Big[\epsilon^2 \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_z}{\partial z^2} \Big],\tag{1}$$

$$\epsilon^4 Re \Big[\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_z \frac{\partial v_z}{\partial z} \Big] = -\frac{\partial p_l}{\partial z} + \epsilon^2 \Big[\epsilon^2 \frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2} \Big],\tag{2}$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0. \tag{3}$$

where $Re = \rho_l U R_0 / \eta_l$ is the liquid Reynolds number.

In the solid, we have

$$\epsilon^2 Re_m \frac{\partial^2 u_x}{\partial^2 t} = -\frac{\partial p_s}{\partial x} + G \Big[\frac{\partial^2 u_x}{\partial z^2} + \epsilon^2 \frac{\partial^2 u_x}{\partial x^2} \Big] + m \frac{\partial}{\partial t} \left[\frac{\partial^2 u_x}{\partial z^2} + \epsilon^2 \frac{\partial^2 u_x}{\partial x^2} \right] = 0, \tag{4}$$

$$\epsilon^4 Re_m \frac{\partial^2 u_z}{\partial^2 t} = -\frac{\partial p_s}{\partial z} + \epsilon^2 G \Big[\frac{\partial^2 u_z}{\partial z^2} + \epsilon^2 \frac{\partial^2 u_z}{\partial x^2} \Big] + \epsilon^2 m \frac{\partial}{\partial t} \left[\frac{\partial^2 u_z}{\partial z^2} + \epsilon^2 \frac{\partial^2 u_z}{\partial x^2} \right] = 0, \tag{5}$$

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} = 0,\tag{6}$$

where $Re_m = (\rho_s/\rho_l)Re$ is a modified Reynolds number, $G = ER_0/\sigma\epsilon^3$ is a dimensionless parameter quantifying the ratio of elastic forces to liquid-solid interfacial-tension forces and $m = \eta_s/\eta_l$ is the viscosity ratio between the solid and liquid phases.

At z = -H the boundary conditions are

$$u_x = u_z = 0, (7)$$

²Email address for correspondence: kumar030@umn.edu

$$v_x = v_z = 0. \tag{8}$$

At the liquid-air interface $z = \zeta(x, t)$, the kinematic, normal stress, and tangential stress boundary conditions are respectively given by

$$\frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} = v_z,\tag{9}$$

$$\frac{1}{Z} \left[-\frac{\partial \zeta}{\partial x} \left(-p_l + 2\epsilon^2 \frac{\partial v_x}{\partial x} \right) + \left(\frac{\partial v_x}{\partial z} + \epsilon^2 \frac{\partial v_z}{\partial x} \right) \right] = -\frac{C_l^{-1}}{Z^4} \frac{\partial^2 \zeta}{\partial x^2} \frac{\partial \zeta}{\partial x} - \frac{1}{Z} \Pi \frac{\partial \zeta}{\partial x}, \tag{10}$$

$$\frac{1}{Z} \left[-\frac{\partial \zeta}{\partial x} \left(\epsilon^2 \frac{\partial v_x}{\partial z} + \epsilon^4 \frac{\partial v_z}{\partial x} \right) + \left(-p_l + 2\epsilon^2 \frac{\partial v_z}{\partial x} \right) + \right] = \frac{C_l^{-1}}{Z^3} \frac{\partial^2 \zeta}{\partial x^2} + \frac{1}{Z} \Pi$$
(11)

where $Z = \sqrt{(1 + \epsilon \partial \zeta / \partial x)^2}$ and $C_l^{-1} = \epsilon^3 \sigma / \eta_l U$ is a rescaled capillary number based on the liquid-air interfacial tension. Note that due to our choice of characteristic velocity, the magnitude of C_l^{-1} is equal to unity.

At the liquid-solid interface $z = \xi(x, t)$, the continuity-of-velocity, normal stress, and tangential stress boundary conditions are respectively given by

$$\frac{\partial u_x}{\partial t}|_{z=0} = v_x|_{z=\xi},\tag{12}$$

$$\frac{\partial u_z}{\partial t}|_{z=0} = v_z|_{z=\xi},\tag{13}$$

$$\frac{1}{\Xi} \left[-\frac{\partial\xi}{\partial x} \left(-p_l + 2\epsilon^2 \frac{\partial v_x}{\partial x} \right) + \left(\frac{\partial v_x}{\partial z} + \epsilon^2 \frac{\partial v_z}{\partial x} \right) \right] - \frac{1}{\Xi} \left[-\frac{\partial\xi}{\partial x} \left(-p_s + 2G\epsilon^2 \frac{\partial u_x}{\partial x} + 2m\epsilon^2 \frac{\partial v_z}{\partial x} \right) + G\left(\frac{\partial u_x}{\partial z} + \epsilon^2 \frac{\partial u_z}{\partial x} \right) + m\frac{\partial}{\partial t} \left(\frac{\partial u_x}{\partial z} + \epsilon^2 \frac{\partial u_z}{\partial x} \right) \right] = \frac{C_s^{-1}}{\Xi^4} \frac{\partial^2\xi}{\partial x^2} \frac{\partial\xi}{\partial x}$$
(14)

$$\frac{1}{\Xi} \left[-\frac{\partial\xi}{\partial x} \left(\epsilon^2 \frac{\partial v_x}{\partial z} + \epsilon^4 \frac{\partial v_z}{\partial x} \right) + \left(-p_l + 2\epsilon^2 \frac{\partial v_x}{\partial x} \right) + \right] - \frac{1}{\Xi} \left[-\frac{\partial\xi}{\partial x} \left\{ G \left(\epsilon^2 \frac{\partial u_x}{\partial z} + \epsilon^4 \frac{\partial u_z}{\partial x} \right) + m\epsilon^2 \frac{\partial}{\partial t} \left(\frac{\partial u_x}{\partial z} + \epsilon^2 \frac{\partial u_z}{\partial x} \right) \right\} + \left(-p_s + 2G\epsilon^2 \frac{\partial u_x}{\partial z} + 2m\epsilon \frac{\partial}{\partial t} \frac{\partial u_x}{\partial z} \right) \right] = -\frac{C_s^{-1}}{\Xi^3} \frac{\partial^2\xi}{\partial x^2}$$
(15)

where $\Xi = \sqrt{(1 + \epsilon \partial \xi / \partial x)^2}$ and $C_s^{-1} = \epsilon^3 \gamma / \eta_l U$ is the rescaled capillary number based on the liquid-solid interfacial tension. Substituting the characteristic velocity $U = \sigma \epsilon^3 / \eta_l$ leads to $C_s^{-1} = \gamma / \sigma$, which is a ratio of the liquid-solid and liquid-air interfacial tensions.

To obtain the leading-order equations, we assume $\epsilon \to 0$ in equations (1)-(15). The leadingorder equations in the liquid are

$$-\frac{\partial p_l}{\partial x} + \frac{\partial^2 v_x}{\partial z^2} = 0, \tag{16}$$

$$\frac{\partial p_l}{\partial z} = 0,\tag{17}$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0. \tag{18}$$

In the solid, we have

$$-\frac{\partial p_s}{\partial x} + G\frac{\partial^2 u_x}{\partial z^2} + m\frac{\partial}{\partial t}\frac{\partial^2 u_x}{\partial z^2} = 0,$$
(19)

$$\frac{\partial p_s}{\partial z} = 0,\tag{20}$$

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} = 0. \tag{21}$$

At z = -H the boundary conditions are

$$u_x = u_z = 0, (22)$$

$$v_x = v_z = 0. \tag{23}$$

At the liquid-air interface $z = \zeta(x, t)$, the kinematic, normal stress, and tangential stress boundary conditions are respectively given by

$$\frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} = v_z, \tag{24}$$

$$p_l = p_{cap,l} - \Pi, \tag{25}$$

$$\frac{\partial v_x}{\partial z} = 0, \tag{26}$$

where $p_{cap,l} = -C_l^{-1}(\partial^2 \zeta/\partial x^2)$ is the capillary pressure in the liquid.

At the liquid-solid interface $z = \xi(x, t)$, the continuity-of-velocity, normal stress, and tangential stress boundary conditions are respectively given by

$$\frac{\partial u_x}{\partial t}|_{z=0} = v_x|_{z=\xi},\tag{27}$$

$$\frac{\partial u_z}{\partial t}|_{z=0} = v_z|_{z=\xi},\tag{28}$$

$$p_s = p_{cap,l} + p_{cap,s},\tag{29}$$

$$\frac{\partial v_x}{\partial z} - G \frac{\partial u_x}{\partial z} - m \frac{\partial}{\partial t} \frac{\partial u_x}{\partial z} = 0, \qquad (30)$$

where $p_{cap,s} = -C_s^{-1}(\partial^2 \xi / \partial x^2)$ is a capillary-like pressure in the solid.