Supplemental Material of "Smoluchowski equations for linker-mediated irreversible aggregation"

J. M. Tavares,^{1,2,*} G. C. Antunes,^{3,1,4,5,†} C. S. Dias,^{3,1,‡} M. M. Telo da Gama,^{3,1,§} and N. A. M. Araújo^{3,1,¶}

¹Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal

²Instituto Superior de Engenharia de Lisboa, ISEL,

Avenida Conselheiro Emídio Navarro, 1 1950-062 Lisboa, Portugal

³Departamento de Física, Faculdade de Ciências,

Universidade de Lisboa, 1749-016 Lisboa, Portugal

⁴Max Planck Institute for Intelligent Systems, Stuttgart, Germany

⁵Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

I. APPROXIMATION FOR THE KERNEL

Here we briefly review how a Brownian kernel is approximated by a constant kernel [1, 2]. The kernels used in this work for the two types of aggregation can be written as $K(i_1, j_1; i_2, j_2) = K_B(i_1, j_1; i_2, j_2)p(i_1, j_1; i_2, j_2)$ and $K_0(i, j) = K_{B,0}(i, j)p_0(i, j)$, with the Brownian kernels given by

$$K_B(i_1, j_2; i_2, j_2) = 4\pi \left(D_{i_1 j_1} + D_{i_2 j_2} \right) \frac{R_{i_1 j_1} + R_{i_2 j_2}}{2},$$
(1)

and

$$K_{B,0}(i,j) = 4\pi \left(D_{ij} + D_L \right) \frac{R_{ij} + R_L}{2}.$$
 (2)

Here D_{ij} , R_{ij} are the diffusion coefficient and the size of a cluster (i, j), respectively; and D_L , R_L are the diffusion coefficient and the size of linkers, respectively. The constant kernel is obtained by assuming that $D_{ij} = D_P$ and $R_{ij} = R_P$, i.e., all clusters have the same diffusion coefficient and the same size of one single particle. Within this approximation the kernels (1,2) become,

$$K_B(i_1, j_2; i_2, j_2) = 2\kappa_P$$
 (3)

and

$$K_{B,0}(i,j) = 2\kappa_P \alpha, \tag{4}$$

with $\kappa_P = 4\pi D_P R_P$ and

$$\alpha = \frac{1}{4} \left(1 + \frac{D_L}{D_P} \right) \left(1 + \frac{R_L}{R_P} \right). \tag{5}$$

Notice that in real systems, according to Stokes-Einstein relation, $R_L/R_P = D_P/D_L = 1/\Delta$ and thus $\alpha = (1 + \Delta)(1 + 1/\Delta)/4$.

II. FINITE-SIZE EFFECTS

The simulations in the main text were performed on a lattice of size $N_{\text{latt}} = 25^3$. In Fig. 1, the results obtained for p_2 , with $\Delta = 10$ and $\phi = 0.05, 0.5$ and 0.95, on lattices of sizes $N_{\text{latt}} = L^3$, with L = 16, 25 and 32 show that finite-size effects are negligible. All differences found are less than 1%, even in the worst case $\phi = 0.95$.

Figure 1. Analysis of finite-size effects. Results for the probability p_2 obtained with $\Delta = 10$ in simulations with $N_{\text{latt}} = L^3$ sites, for L = 16, 25 and 32. (a) short times and $\phi = 0.05, 0.5$ and 0.95; (b) long times, $\phi = 0.05$; (c) long times, $\phi = 0.5$; (d) long times, $\phi = 0.95$.

III. ASYMPTOTIC RESULTS FOR OTHER Δ

In the main text, the asymptotic values of the probabilities for $\phi < 1 - 1/f$ are obtained with $\Delta = 10$ (simulation results). For $\Delta = 1,5$ and 20 we obtained exactly the same asymptotic values for the probabilities: for $\phi = 0.05$, $p_2 = 1$; for $\phi = 0.5$, $p_1 = 0.6672$ and $p_2 = 0.3328$. The latter are to be compared with the results of the theory for $\phi = 0.5$: $p_2 = 1/3$ and $p_1 = 2/3$.

^{*} jmtavares@fc.ul.pt

[†] antunes@is.mpg.de

 $^{^{\}ddagger}$ csdias@fc.ul.pt

[§] mmgama@fc.ul.pt

[¶] nmaraujo@fc.ul.pt

IV. COMPARISON TO THE CASE WITHOUT LINKERS

The results obtained in the main text can be compared to those of a system with particles (no linkers) that may bond directly to each other through their f bonding sites. In such a case, the theory with a constant kernel predicts that $p_b = \frac{2}{f} \frac{t}{1+t}$ [2]. Figure 2 compares this result to those obtained with the approximate theory for particles and linkers for several values of Δ and ϕ . At the early stages, the growth of p_b (and therefore of clusters) is much smaller when linkers are present. In the case $\phi =$ 0.5, the asymptotic state is the same with or without linkers ($p_b = 2/f$). It is, however, immediately obvious that the introduction of linkers delays cluster formation even at long times. Therefore, the introduction of linkers allows for the tunable slowing down of aggregation, and

[1] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

in particular enables the study and exploitation of earlystage dynamics.

Figure 2. Bonding probability as a function of time for a system with no linkers where particles bond directly and for systems with particle-linker aggregation. (a) $\Delta = 1$, (b) $\Delta = 10$.

[2] P. L. Krapivsky, S. Redner, and E. Ben-Naim, <u>A Kinetic View of Statistical Physics (Cambridge University Press, New York, 2011) pp. 1–488.</u>